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Preface

This volume contains papers presented at the Fourth International Workshop
on Mathematical Methods, Models and Architectures for Computer Network
Security (MMM-ACNS 2007) held in St. Petersburg, Russia, during September
13–15, 2007. The workshop was organized by the St. Petersburg Institute for
Informatics and Automation of the Russian Academy of Sciences (SPIIRAS) in
cooperation with Binghamton University (SUNY, USA).

The organizers are proud that the MMM-ACNS workshops hosted by the
St. Petersburg Institute for Informatics and Automation in 2001, 2003 and 2005
evolved into a bi-annual series recognized in the professional community. These
events not only demonstrated the keen interest of the participating researchers
in the subject matter and the opportunity to present and disseminate individual
achievements, but also promoted the spirit of cooperation, camaraderie, free
exchange of ideas, and intellectually stimulating interaction between colleagues.

Again, MMM-ACNS 2007 provided an international forum for sharing orig-
inal research results among specialists in fundamental and applied problems of
computer network security. An important distinction of the conference was its
focus on mathematical aspects of information and computer network security
addressing the ever-increasing demands for secure computing and highly de-
pendable computer networks.

A total of 56 papers from 18 countries related to significant aspects of both
theory and applications of computer network and information security were sub-
mitted to MMM-ACNS 2007. In total, 18 papers were selected for regular pre-
sentations and 12 for short presentations (32 % of acceptance for full papers and
53 % for all papers).

The MMM-ACNS 2007 program was enriched by invited papers presented
by six distinguished invited speakers: Christian Collberg (University of Ari-
zona, USA), Angelos D. Keromytis (Columbia University, USA), Paulo Veris-
simo (University of Lisbon, Portugal), Jean-Daniel Aussel (Gemalto, France),
Mauricio Sanchez (ProCurve Networking, HP, USA) and Victor Serdiouk (Di-
alogueScience, Inc., Russia) addressing important theoretical aspects and ad-
vanced applications.

The success of the workshop was assured by the team efforts of sponsors,
organizers, reviewers and participants. We would like to acknowledge the con-
tributions of the individual Program Committee members and thank the paper
reviewers.

Our sincere gratitude goes to the participants of the workshop and all authors
of the submitted papers. We are grateful to our sponsors: European Office of
Aerospace Research and Development (EOARD) of the U.S. Air Force and the
U.S. Office of Naval Research Global (ONRGlobal) for their generous support.
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We also wish to express our gratitude to the Springer LNCS team managed
by Alfred Hofmann for their help and cooperation.

September 2007 Vladimir Gorodetsky
Igor Kotenko

Victor Skormin
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Surreptitious Software: Models from Biology
and History

Christian Collberg1,�, Jasvir Nagra2,��, and Fei-Yue Wang3

1 Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA
christian@collberg.com

2 Dipartimento di Informatica e Telecomunicazioni, University of Trento, Via
Sommarive 14, 38050 Povo (Trento), Italy

jas@nagras.com
3 Key Lab for Complex Systems and Intelligence Science, Institute of Automation,

Chinese Academy of Sciences, ZhongGuanCun East Road 95, Beijing, Haidian,
People’s Republic of China

feiyue@gmail.com

Abstract. Over the last decade a bewildering array of techniques have
been proposed to protect software from piracy, malicious reverse engi-
neering, and tampering. While we can broadly classify these techniques
as obfuscation, watermarking/fingerprinting, birthmarking, and tamper-
proofing there is a need for a more constructive taxonomy. In this pa-
per we present a model of Surreptitious Software techniques inspired by
defense mechanisms found in other areas: we will look at the way hu-
mans have historically protected themselves from each other and from
the elements, how plants and animals have evolved to protect themselves
from predators, and how secure software systems have been architected
to protect against malicious attacks. In this model we identify a set of
primitives which underlie many protection schemes. We propose that
these primitives can be used to characterize existing techniques and can
be combined to construct novel schemes which address a specific set of
protective requirements.

Keywords: Software protection, defense mechanisms, taxonomy.

1 Introduction

Your computer program can contain many different kinds of secrets that you may
feel need to be protected. For example, you may want to prevent a competitor
from learning about a particularly elegant algorithm. You therefore obfuscate
our program, i.e. make it so convoluted and complex that reverse engineering
it becomes a daunting task. Or, you may want to bind the copy sold to each
person who buys it to prevent them from illegally reselling it. You therefore
fingerprint the program, i.e. embed a unique identifier into each copy you sell,
� Supported in part by the Institute of Automation, Chinese Academy of Sciences.

�� Supported by the European Commission, contract N◦ 021186-2, RE-TRUST project.

V. Gorodetsky, I. Kotenko, and V.A. Skormin (Eds.): MMM-ACNS 2007, CCIS 1, pp. 1–21, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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allowing you to trace a pirated copy back to the original purchaser. Or, you may
want to prevent a user from running a program after he has manipulated it, for
example by removing a license check. You therefore tamperproof the program,
i.e. make it unexecutable/self-destructing/self-repairing if it detects that its code
has changed. Or, you may want to detect if part of your program has been
incorporated into your competitor’s program. You therefore check for birthmarks,
unique characteristics of your code, within your competitor’s code.

These techniques have collectively been referred to as intellectual property
protection of software, or software protection, or whitebox cryptography. However,
we will henceforth refer to the area as Surreptitious Software.

Over the last decade many algorithms have been proposed to protect secrets
in programs. Seeing as the area has been (and is still) in a great deal of flux,
a core set of ideas and techniques on which these algorithms are built has yet
to be identified. It is the purpose of this paper to serve as a starting point
for constructing such a classification scheme. Our goal is to identify a set of
primitives which can be used to build algorithms protecting secrets in programs,
and to use these primitives to model and classify software protection schemes
that have been proposed in the literature. It is our hope that this model will
provide a uniform language for researchers and practitioners, making it easier to
discuss existing protection schemes and to invent new ones.

In software engineering, researchers have developed the concept of “design
patterns” [1] to capture the rules-of-thumb that regularly occur during the de-
velopment of large pieces of software. Garfinkel [2] also describes user-interface
design patterns for security applications. The models of attacks and defenses
we will describe in this paper are similar. Our motivation for identifying and
classifying software protection schemes is to eliminate the need to develop new
schemes from first principles. Instead we seek to model attacks and defenses that
occur repeatedly so experiences and solutions can be reused. We hope that as a
result, the insights gained from defending against any one instance of an attack
can be generalized to the entire class of defenses.

We will seek inspiration for this model from defense mechanisms found in
nature, from the way humans have protected themselves from each other and
from the elements, and from protection schemes found in software systems. We
will see how, since the dawn of time, plants, animals, and human societies have
used surreptition to protect themselves against attackers, and then see how (or
if) these ideas can be applied to the intellectual property protection of software.

The model we present here is still in its infancy. In particular, to complement
our model of the techniques used by the defender we’re still working to model
the techniques used by the adversary. Our ultimate goal is a model which will
allow us to classify a proposed new software protection scheme as

1. a simple variant of another, previously published scheme, or,
2. a novel combination of two known schemes, which we can predict will have

certain properties, or
3. a novel scheme not fitting the model, forcing us to reconsider the model

itself.
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Ideally, we would like the model to predict new ways of protecting software, i.e. we
should be able to deduce from the model if there are combinations of techniques
that will produce a protection scheme with a particular set of required properties.

The remainder of the paper is organized as follows: In Section 2 we describe
our notation and in Section 3 the intents of an attacker. In the main section,
Section 4, we present the protection primitives available to the defender. In
Section 5 we summarize our model and point out directions for future research.

2 Notation

Our model consists of a universe of objects. The attacks we are concerned with
and defenses against these attacks are modeled as a series of transformations
on these objects. We represent all objects as frames. Frames are knowledge rep-
resentation devices well-known from the AI community. A frame consists of a
unique identifier and one or more slots, which are name=value-pairs. We use a
graphical notation to illustrate frames and frame transformations:

U
ni

ve
rs

e

⎡⎢⎢⎢⎢⎢⎣
〈 B

ob [name="Robert"

A
lic

e [
name="Alice"
age =22

R
ob

er
t [

name="Robert"

Each frame is introduced by a left square bracket ([), and the object’s unique
identifier is written vertically to the left of the bracket.1

The slots of a frame describe properties of an object. A value can be a scalar
such as a string or an integer, a list of objects, another frame, or a reference
to another frame. A special list slot is the contains slot, which, when present,
indicates that a particular object contains other objects. The contains slot is
indicated by a left angle bracket (〈). In the example above the universe itself is
such a frame, where the contains slot has three objects, Alice, Bob, and Robert.

In our model, protection strategies are functions which map frames to frames.
We start out with a universe of unprotected objects and proceed by a sequence of
protective transformations that make the objects progressively safer from attack.
Layering protection schemes is modeled by function composition of the frame
transformations. Attacks are also modeled by frame-to-frame transformations:
they try to subvert protection strategies by undoing layers of protection.

As an example, consider the Leatherback turtle (Dermochelys coriacea) which
buries its eggs in the sand to protect them from predators and the elements. In
Figure 3 (a), the initial, unprotected scenario is a frame where the universe con-
tains a a turtle, sand, and eggs. Then, we apply the cover protection primitive,

1 In AI, frames can be of various types called “abstractions”. For example, ”Bob” can
have “human” and “attacker” abstractions. However, for our purposes of this paper
we do not require this additional classification.
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Steal

Gain Access Deprive Access Alter Object Alter Environment

Denial of Service Vandalize Counterfeit

Attacks

Fig. 1. Types of attacks

the sand frame is given a contains slot, and this slot now holds the turtle-eggs
frame. This indicates that a predator can no longer see the turtle-eggs, them
now being covered by sand. In other words, an object can only sense what’s in
its own environment—it cannot look inside other objects.

Each slot can also have associated with it a set of demons. These are actions
which fire under certain circumstances. For example, to protect its young the
Cane toad (Bufo marinus) lays eggs that are poisonous. We would represent this
form of protection with a demon attached to a toad egg saying “when eaten
then cause harm to attacker”.

The model uses seven basic operations to construct frames and frame trans-
formations. The new and delete operators create and destroy frames from the
universe respectively. As in the real universe objects are never actually created
or destroyed, but manufactured from existing material. We model this by giving
new and delete access to a special source object which provides an infinite sup-
ply of raw-materials and a sink object into which excess material can be disposed.
The getprop, setprop and delprop operators get, set and delete properties of
a given frame. The move operator relocates an object represented by a frame
from a particular position in one object to a different position within a possibly
different object. Our final operator, apply is function application.

These seven basic operations allow us to build the universe of unprotected
objects that we are interested in as well as the protective primitives that we
describe. However, we do not give their explicit formulations in this paper.

3 Attacks

In order to describe protection schemes we require a corresponding model of the
attacker. Protection is an act of defense against a perceived attack. The type
of protection a scheme provides depends heavily on which types of attack are
of interest. For example, in the case of the Leatherback turtle hiding its eggs,
the threat being defended against is a predator stealing and eating the eggs,
depriving the parent turtle of its offspring. In other cases, (like the Common
Cuckoo, (Cuculus canorus)), an attacker may be interested in adding their own
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eggs to the brood which appear similar to the nest owner’s eggs. The intent of
this attacker is to pass on their genes with minimal labor, by mimicking the
object of value.

Given an object of value O, we can taxonomize the attacks by considering the
different ways an attacker may derive value from O. The intent of an attacker
may be to: gain unauthorized access to O, deprive legitimate users access to O,
alter O, or alter the environment in which O occurs.

In Figure 1, a variety of attacks are shown classified into four different types.
In a stealing attack, an attacker simply takes the object of value, while in a
denial-of-service attack, an attacker deprives legitimate access to an object over-
whelming it. Vandalizing a piece of property is an example of devaluing an object
by altering it. Counterfeiting alters the environment of an object by filling it with
imitations which in turn can reduce the value of the original.

The primitives that we will build in the next section are designed to prevent
each of these types of attacks, irrespective of the context in which they occur.
For example, in the next section we will introduce a cover operator. In the
biological context, a Leatherback turtle can defend unauthorized access to its
eggs by hiding them in sand using the cover operator. Similarly, in the historical
context, pirates would hide their treasure by burying their treasure on a remote
island using the same cover operator. In software, we may embed a picture
inside a document to hide it from prying eyes. The document serves as a cover
for the picture. In all three instances, the pattern of defense remains the same
— hide the object of value using another object — even though the context may
have changed.

4 Defenses

In Figure 2 we illustrate the eleven primitive operations of the defense model.
Each primitive is a transformation from an unprotected universe of objects to
a protected one. In the remainder of this section we will present each primitive
in turn and illustrate with scenarios from biology, human history, computer
security, and surreptitious software.

4.1 The Cover Primitive

The most fundamental way of defending against all four types of attacks is to
hide an object by covering it with another object. If the attacker does not have
access to an object, it becomes difficult for him to attack it. This may seem
like a trivial observation, but covering is an operation that occurs frequently
in the natural, human, and computer domains. In Figure 3 (a), we illustrate our
earlier biological example of the Leatherback turtle. In Figure 3 (b), we show
an historical example of covering occurring in in 499 BC, when, to instigate
a revolt against the Persians, Histiaeus tattooed a message on the shaved head
of a slave, waited for the hair to grow back, and sent him to Axristagoras who
shaved the slave’s head again to read the message.
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Fig. 2. Primitives of the protection model

In the software world, we can cover a file or some data by putting it inside an-
other file. For example, when mail systems initially began scanning attachments
for viruses, virus writers responded by zipping (and occasionally encrypting)
the virus before emailing them. The zip file served as cover for the virus itself
(Figure 3 (c)). In order to counter this cover, mail servers today have to “look
under” every possible cover by unpacking and scanning every archive (including
archives containing archives) to find potential viruses.

A more obvious instance of covering occurs in systems that use hardware
to protect software. For example, the military uses hardened boxes to contain
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Fig. 3. Applying the cover primitive in the biological, historical, and software domains

computers on which sensitive software is run. These boxes are also
tamperproofed so that they will explode (known by the military as “rapid
disassembly”) if someone unauthorized tries to open them. Tamperproofing
is in fact one of the primitives in our model, and we will discuss this further in
Section 4.9.

4.2 The Copy Primitives

The decoy primitive makes the environment larger to force an attacker to con-
sider more items while searching for a secret or to draw attention away from the
real secret. The clone primitive adds a copy of the secret itself to the universe in
order to force an attacker to destroy both copies. The difference between clone
and decoy is merely one of intent, and in Figure 2 we therefore merge these
primitives into one, copy.

In the animal kingdom, decoying and cloning are common protection strate-
gies. An animal low on the food-chain will often use cloning to protect itself, or,
rather it’s own DNA. For example, the Pufferfish (Arothron Meleagris) spawns
200,000 offspring in the hope that at least some will survive and carry on its
parents’ legacy.

The California newt (Taricha torosa) combines cloning, tamperproofing,
and covering to protect its progeny. The newt lays 7-30 eggs, each covered by
a gel-like membrane containing tarichatoxin for which no known antidote exists.

Scientists are still unsure exactly why zebras have stripes, but one favorite
theory suggests that they are used as part of a decoying strategy: when a zebra
is running in a herd of similarly-striped animals it’s difficult for a lion to pick
out one individual to attack. As we’ll see later, mimicking is another possible
explanation.

Decoys are, of course, common in human warfare: “In World War II, the U.S.
created an entire dummy army unit in southern Britain to convince the Germans
that the Normandy invasion would be directed toward the Pas-de-Calais” and
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Fig. 4. Applying the cloning primitive to protect the Coca-Cola recipe. We’ve cloned
twice and covered three times, resulting in a situation where the three executives are
each holding a copy of the recipe in their pockets.

during Gulf War I, the Iraqis “employed mock tanks, airplanes, bunkers and
artillery” made up of “plywood, aluminum and fiber glass” [3].

A well-known legend states that the recipe for Coca-Cola is protected by
cloning it over three people, none of whom may ever travel on the same plane
(Figure 4).

In the recent TV mini-series Traffic, terrorists attempt to smuggle smallpox
virus into the United States. The authorities are conned into believing that the
smallpox will enter the country inside a shipping container with a particular
identification number, but are forced into a nationwide hunt once they realize
that the terrorists have shipped several containers with the same number ! This is
a classic use of decoying, but later in this section you will see how the terrorists
combined this ruse with the advertise primitive to further confuse the DEA.

Decoys can be used by software watermarking algorithms to protect the
mark. In the very simplest case you just add a variable with a conspicuous
name, like this:

� �

int THE_WATERMARK_IS_HERE = 42;
� �

This draws attention away from the actual watermark, if only for a short while.
You could also add a number of fake watermarks, some really obvious, some less
so, to force the attacker to spend valuable time examining them all, and having
to decide which one is real and which ones are fakes. The cloning primitive can
also be used to embed multiple copies of the mark (possibly by using different
embedding algorithms), thus forcing the attacker to locate and destroy all of them.

In code obfuscation, cloning is also a common operation. For example, a
function f could be cloned into f ′, the clone obfuscated into f ′′, and different
call sites could be modified to either call f or f ′′ [4]. This gives the appearance
that calls to f and f ′′ actually call different functions, both of which the attacker
needs to analyze in order to gain an understanding of the program. A basic block
B in a function can similarly be cloned into B′, obfuscated into B′′, and an
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Fig. 5. Watermarking an image using echo hiding, by applying the split and merge
primitives

opaque predicate can be inserted to alternate between executing the two blocks:
if P ? then B else B′′ [5].

4.3 The Split and Merge Primitives

Split and merge are two common protection transformations, particularly in
software situations where these are simple to implement. Split breaks up an ob-
ject into smaller parts each of which are easier to hide or protect. Merge blends
two unrelated objects together to make it appear as if they belong together. To
create mass confusion, splitting and merging are often used in conjunction: take
two unrelated objects A and B and split them into parts A1, A2, B1, and B2,
then merge A1 with B1 and A2 with B2.

When attacked, some animal species will split themselves and let the attacker
have one part for dinner. This is known as autotomy [6]. This technique is par-
ticularly useful when the species is also able to regenerate the lost part. In our
classification this is a form of tamperproofing which we will discuss further in
Section 4.9 below.

Squirrels use so-called scatter hoarding to split up the food they’ve gathered
and cache it at different locations in their territory. The larger Gray Squirrel
(Sciurus carolinensis) is known to steal the caches of the European Red Squirrel
(Sciurus vulgaris), but the split makes it less likely that all the food will be lost.

Human organizations frequently split themselves up into groups to prevent
an adversary from destroying the entire organization in one attack. This is true,
for example, of terrorist networks which split themselves up in into smaller,
autonomous cells. Each cell is less conspicuous than the whole network, and an
attack (from an outside force or an inside informant) will affect only the cell
itself, not the network as a whole.

Some software watermarking algorithms split the watermark into several
smaller pieces such that each piece can be embedded less conspicuously [7,8].
Merging is also a natural operation, since the watermark object has to be at-
tached to some language structure already in the program.

Echo hiding is an audio watermarking technique in which short echoes (short
enough to be undetectable to the human ear) are used to embed marks. A
really short echo encodes a 0 and a longer one a 1. In our model, embedding a
single-bit watermark m is accomplished by a) settling on an embedding location
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p, b) copying D0 bits for a 0 and D1 bits for a 1 from p, and c) merging
the copy back into the clip. In this embedding example, shown in Figure 5,
D0 = 2, D1 = 3, p = 2,m = 0.

Obfuscation algorithms make extensive use of splitting and merging to
break up, scatter, and merge pieces of a program, thereby creating confusion.
For example, to confuse someone trying to reverse engineer a program contain-
ing two functions f and g, each can be split in two parts (yielding fa, fb, ga,
gb) and then the parts can be merged together forming two new functions fa||gb

and fb||ga. Any calls to f or g will have to be modified, of course, to call the
new functions, and to call them in such a way that only the relevant parts are
executed [4].

Two common protection strategies are shrink and expand. Shrinking one-
self to become as small as possible makes it easier to hide in the environment.
Expanding, on the other hand, is the operation of making oneself as large as
possible, larger objects being harder to destroy than smaller ones. Shrink and
expand are just variants of split and merge, however, so we don’t include
them as primitive operations. An object shrinks itself by splitting into two parts,
one essential and one superfluous, disposing of the fluff. Expansion, similarly, is
merging yourself with some new building material grabbed from the surrounding
environment.

The Pufferfish uses a combination of several defense strategies. One is to
expand its size (by inflating itself with water or air from its surroundings) in
order to appear threatening or a less easy target to an attacker. The blue whale
has grown so big that it only has one natural predator, the Orca.

That size is an important feature of hiding or protecting a secret is evident
from the expression “as hard as finding a needle in a haystack.” Implicit in this
expression is that the needle is small and the haystack big. Hiding the Seattle
Space Needle in a normal size haystack would be hard, as would hiding a sewing
needle in a stack consisting of three pieces of hay. So, a common strategy for
hiding something is to shrink it, such as a spy compressing a page of text to
a microdot. This is often combined with decoying, increasing the size of the
environment, for example using a really big haystack in which to hide the needle
or hiding the microdot in the Bible instead of in the 264 words of the Gettysburg
address. Expansion is, of course, also a common human strategy. A bigger vault
is harder to break into than a smaller one, a bigger bunker requires a bigger
bomb to destroy it, and in a crash between an SUV and a VW Beetle one driver
is more likely to walk away unscathed than the other.

The principle behind LSB (Least Significant Bit) image watermark embedding
is that the low order bits of an image are (more or less) imperceptible to humans
and can be replaced with the watermarking bits. In our model, this is a shrink
operation (shrinking the image gets rid of the imperceptible fluff) followed by
merging in the watermarking bits.

It is important not to keep passwords or cryptographic keys in cleartext in
computer memory. An attacker who gets access to your machine can search
through memory for tell-tale signs of the secret: a 128-bit crypto key, for example,
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Fig. 6. Watermarking a program by applying the reorder primitive

has much higher entropy than ordinary data and will be easy to spot [9]. There
are two simple ways of fixing this problem: either increase the entropy of the data
surrounding the key (for example by encrypting it) or decrease the entropy of
the key itself. The latter can be accomplished for example by splitting the key
into several smaller pieces which are then spread out over the entire program.
Thus, this is an application of the split and reorder primitives. We will examine
reordering next..

4.4 The Reorder Primitive

The reorder transformation can be used to place objects in a random order,
thereby sowing confusion. But a reordering can also contain information. Think
of 007 entering a room and finding that the gorgeous blonde Russian operative
who was just abducted left him a message: the martini glass has been moved to
the left of the Baretta, letting James know that he needs to be on the lookout
for Blofeld.

In various cons such as the shell game or three-card-monty, the secret (the
pea or the queen, respectively) is hidden from the victim by sequences of deft
reorderings by the con-man. This combines reorder with the dynamic prim-
itive which we will see in Section 4.10.

Many watermarking algorithms, in media as well as software, make use of
reordering to embed the mark. The idea is that a watermark number can be
represented as a permutation of objects. For example, in the Davidson-Myhrvold
software watermarking algorithm the watermark is embedded by permuting the
basic blocks of a function’s Control Flow Graph. In the example in Figure 6, the
watermark number 5 is embedded by ordering the permutations of the numbers
[1 . . . 5]:

[1, 2, 3, 4, 5], [2, 1, 3, 4, 5], [2, 3, 1, 4, 5], [2, 3, 4, 1, 5], [2, 3, 4, 5, 1], . . .

picking the 5th permutation to reorder the basic blocks.
Many code obfuscation algorithms also make use of the reorder primitive.

Even when there is an arbitrary choice on how to order declarations or state-
ments in a program, programmers will chose the “most natural” order over a
random one. Randomly reordering functions within a program will destroy the
information inherent in the grouping of functions into modules, and the order of
functions within modules.



12 C. Collberg, J. Nagra, and F.-Y. Wang

U
ni

ve
rs

e�
��
�

fu
n1 ��

bb
1 ��

"call fun2"

fu
n2 �〈

⇒ U
ni

ve
rs

e�
���
�

fu
n1 ��

bb
1 ��

"call ->ref1"

fu
n2 �〈

ref1=→ fun2

⇒ U
ni

ve
rs

e

�
�����

�

fu
n1 ��

bb
1 ��

"call ->ref2"

fu
n2 �〈

ref1=→ fun2
ref2=→ ref1

Fig. 7. Obfuscating a program by applying the indirect primitive

Of course, reorder can also be used as an attack: to destroy a watermark
based on ordering all the attacker has to do is apply the algorithm again, de-
stroying the previous ordering at the same time as he’s inserting his own mark.

4.5 The Indirect Primitive

In baseball, the coach uses hand signs to indicate to the batter whether to hit
away, bunt, etc. To prevent the opposing team from stealing the signs the coach
will use decoying as well as adding a level of indirection. The actual sign is
merged with a sequence of bogus decoy signs and a special indicator sign. The
indicator gives the location of the actual sign, typically the one following directly
after the indicator.

Indirection is also a common adventure movie plot device. In National Trea-
sure, Nicolas Cage is lead by a sequence of increasingly far-fetched clues (a frozen
ship in the arctic, a meerschaum pipe, the Declaration of Independence, a $100
bill, etc.), each one pointing to the next one, eventually leading to the final
location of the hidden treasure (a Freemason temple).

Like our other primitives, indirection is often used in combination with other
protection strategies. Our hero will find that the next clue is inside a box hid-
den under a rock (covering), that there are many boxes under many rocks
(decoying), that the box will explode unless he unlocks it just the right way
(tamperproofing), and he that needs to find both pieces of the clue in order to
locate the treasure (splitting).

One of our particularly clever friends came up with the following scheme for
protecting her foreign currency while backpacking around Europe. First, she
sewed the different currencies (this was before the European Union adopted the
Euro) into different parts of her dress, a form of covering. Next, in order to
remember where the Deutchmark, French Francs, etc., were hidden, she wrote
down their locations on a piece of paper (indirection). Of course, if someone
were to find this note she’d be in trouble, so she wrote it in French (mapping)
using the Cyrillic alphabet (another mapping), banking on few common thieves
being fluent in both Russian and French. She never lost any money.



Surreptitious Software: Models from Biology and History 13

Since exact pointer analysis is a hard problem [10], indirection has also
become a popular technique in protecting software [5,11]. The idea is to replace
a language construct (such as a variable or a function) by a reference to it. This
adds a confusing level of indirection. Just like Nicholas Cage running around
chasing one clue after another, an attacker analyzing a protected program would
have to chase pointer-to-pointer-to-pointer until finally reaching the real object.
Consider the example in Figure 7. Here we start out with two functions fun1 and
fun2, where fun1 contains one instruction, a call to fun2. We apply the indirect
primitive to add an indirect reference ref1, and then the map primitive to
replace all references to fun2 by an indirect reference through ref1. We then
repeat the process to force an attacker to unravel two levels of indirections.

4.6 The Map Primitive

The map primitive typically protects an object by adding confusion, translating
every constituent component into something different. If the mapping function
has an inverse, this obviously needs to be kept secret.

Translation is a form of mapping where we map every word m in a dictionary
to another word r, usually in a different language, keeping the mapping secret.
The Navajo Code talkers are famous for their rôle in World War II, conveying
messages in a language unfamiliar to the Japanese. Humans use this trick to
confuse outsiders, or often to build cohesion among members of a group. Con-
sider, for example, the l33t language used by youths in online communities. It
sets them apart from others who don’t know the language, but it also protects
their communication from outsiders (such as their parents).

Obfuscated language mappings occur in many professional fields as well, in-
cluding computer science, medicine, and law. Steven Stark [12] writes in the
Harvard Law Review that “one need not be a Marxist to understand that jargon
helps professionals to convince the world of their occupational importance, which
leads to payment for service.” In other words, obfuscating your professional lan-
guage protects you from competition from other humans of equal intelligence,
but who have not been initiated into your field.

The most obvious way to protect a secret is to not tell anyone about it! This
is sometimes known as security-through-obscurity. An example is the layout of
many medieval cities in the Middle East. At first it may seem that there is
no good reason for their confusing alleyways until you realize that the lack of
city planning can actually be a feature in the defense of the city. Without a
map only those who grew up in the city would know how to get around — an
obvious problem for attackers. But this strategy only works in an environment
with poor communications; as soon as there’s a Lonely Planet guide to your city
your attempts to use secrecy to protect yourself will have failed.

Figure 8 shows the simplest form of code obfuscation, name obfuscation [13],
a form of translation that replaces meaningful identifiers with meaningless ones.

A common way of watermarking English text is to keep a dictionary of syn-
onyms, replacing a word with an equivalent one to to embed a 0 or a 1 [14]. See
Figure 9 where we’ve used a dictionary to embed a 1 at position 2 in the text.
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Fig. 8. Applying the map primitive to rename identifiers

Cryptographers use the terms confusion and diffusion to describe properties
of a secure cipher [15]. Confusion is often implemented by substitution (replacing
one symbol of the plaintext with another symbol) which, in our terminology is
a mapping. Diffusion is implemented by transposition (rearranging the sym-
bols), what we call reordering. A product cipher creates a secure cipher from
compositions of simple substitutions and transpositions.

4.7 The Mimic Primitive

Mimicry is, of course, the greatest form of flattery. We can use it as many
different forms of protection. Camouflage, for example, is trying to look like an
object in your environment. Mimicry can also be a deterrent — you can try to
look like someone or something you’re not, to scare off attackers. In our model,
the mimic primitive simply copies a property from one object to another.

The chameleon is probably the animal most well-known for use of camouflage,
mimicking the colors of items in its background in order to avoid detection.
Many other animals avoid predators in a similar way. As we noted earlier, sci-
entists are not sure exactly why the Zebra has stripes. One theory is that lions
(being color blind) cannot pick out a zebra from the background when it stands
still in high grass, i.e. the zebra mimics it’s background. Another theory con-
tends that the stripes confuse Tse-tse flies (Glossina palpalis).

Peter Wayner’s mimic functions [16] create new texts which steganographi-
cally encode a secret message. In order not to arouse suspicion, the texts are
made such that they mimic texts found in our daily lives, such as transcripts of
a baseball announcer, shopping lists, or even computer programs. If the mimicry
is good, i.e. if the statistical properties of a generated text are close enough
to those of real texts, then we will be able to send secret messages across the
Internet without anyone noticing.

The same technique has been been used by spies. For example, during World
War II, Japanese spy Velvalee Dickinson wrote letters about her doll collection
to addresses in neutral Argentina. When she was writing about dolls she actually
was talking about ship movements. She was eventually caught and jailed.

In 2004, during a vehicle search, Hungarian police found what appeared to be
a fake Viagra tablet. Apart from being pink, it was rhombus shaped, had Pfizer
imprinted on one side and VGR50 on the other — clearly a bad Viagra coun-
terfeit. However, further analysis revealed that the tablet was just mimicking
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Fig. 9. Applying the map primitive to embed a watermark in English text

Viagra and instead contained amphetamine. See Figure 10. Here we’ve applied
the mimic primitive three times, once for each attribute. Why the drug smug-
glers did not also mimic the highly recognizable blue color of Viagra tablets is
hard to know, but it’s possible that they thought that appearing to be a bad
counterfeit would make it less likely for the tablet be tested for illegal substances.

A central concept in surreptitious software is stealth. Any code that we intro-
duce as a result of the protection process must fit in with the code that surrounds
it, or it will leave tell-tale signs for the attacker to search for. In other words, the
new code must mimic aspects of the original code written by humans. There
can be many such aspects, of course: the size of the code, the instructions used,
the nesting of control structures, and so on, and a stealthy protection algorithm
must make sure that the introduced code mimics every aspect. By embedding a
watermark in a modified cloned copy of an existing function, Monden’s [17] soft-
ware watermarking algorithm mimics the style of code already in the program,
thereby increasing stealth. As seen in Figure 11 this is actually accomplished
using a combination of the clone and the map primitives.

4.8 The Advertise Primitive

By default, our model assumes that objects keep all information about them-
selves secret. In other words, Alice can see what other objects are around her,
but she only knows their identities, she can’t look inside them. This is how
we normally protect ourselves: We call the primitive which breaks this secrecy
advertise. In our model it is represented by a special property advertise which
lists the names of the properties visible to the outside.

One way advertising assists the defenses of an object is by identifying itself
to its defenders. Flamingoes (Phoenicopterus ruber ruber) bring up their young
in large crèches, however, parents feed and take care of only their own chicks. The
chicks advertise their appearance and vocalization. These characteristic allow
parents to recognize and defend their own progeny. In software, similar birth-
marks [18] — unique characteristics of a program — allow an author to detect
piracy by recognizing characteristics of their own programs in other software.

Another common use of this primitive is for the defender to advertise the
strength of his defenses in the hopes that an adversary will stay away. There is
nothing, of course, that says the defender must advertise correct information! In
fact, a common use for this primitive is to lead an attacker astray by feeding
them falsehoods.
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Toxic species often use bright colors to advertise their harmfulness. This is
known as aposematic coloration [6]. The easily recognizable red-yellow-black
striped coloration pattern of the highly poisonous Coral snake is an example
of this. The King snake protects itself by mimicking the Coral snake, while
actually being non-venomous. Falsely advertising “Look, I’m venomous!” will
confuse predators to stay away. The transformations are shown in Figure 12.

In many ways, advertise can be seen as the opposite of security through
obscurity — rather than keeping our defenses secret we openly display them to
our adversary, taunting them to “go ahead, take your best shot!” In an ideal
scenario they will take one look at us, walk away disheartened, and launch an
attack against a less well defended target. In a less ideal scenario, knowing details
of our defenses will allow them to work out a chink in our armor - like a 2 meter
exhaust vent leading straight into the core of our Death Star allowing anyone
with a spare proton torpedo to reduce us to so much space debris.

We already mentioned the recent TV mini-series Traffic, where terrorists
smuggle smallpox virus into the United States, sending the authorities on a
wild goose chase across the country hunting for the right container among several
decoy containers with the same number. In the end, it turns out that the terror-
ists had used advertise (“the virus is in one of these containers *wink,wink*”),
to trick the DEA: all the containers were actually decoys and the actual carriers
of the virus were the illegal immigrants on board the cargo ship.

False advertising also works in the software protection domain. A program
can advertise that it is watermarked, when in fact it isn’t, or advertise that it is
tamperproofedusing a particular algorithm, when in fact it is using another one.

4.9 The Tamperproof Primitive

Tamperproofing has two parts, detecting that an attack has occurred and react-
ing to this. The reaction can be a combination of

1. self-destructing (in whole or in part),
2. destroying objects in the environment (including the attacker), or
3. regenerating the tampered parts.
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Fig. 11. Stealthy software watermarking using mimicry. We first clone an existing
function and then map its instructions to new ones to embed the mark.

Some animals can regenerate destroyed parts of their bodies (usually limbs
and tails but in some cases even parts of internal organs) after an attack. Starfish
can regrow their entire organism given just one arm and the central disk.

A Pufferfish uses a combination of several defense strategies: he can expand
his size to appear threatening to an attacker, and an attacker who never-the-less
starts munching on him will have to deal with the neurotoxins of his internal
organs, a form of tamperproofing. It may not save an individual Pufferfish’s
life, but it might save his brothers and sisters since the attacker is either dead
or has developed a distaste for Pufferfish.

Turtles and many other animals use exoskeletons (a form of covering) to
protect themselves. Some combine this with tamperproofing, using poisons to
make themselves unpalatable once the protective layer has been removed by the
predator. The Hawksbill turtle (Eretmochelys imbricata) has both a shell and
poisonous flesh.

Humans using tamperproofing to protect themselves is a common movie plot:
the terrorist straps explosives to his chest and holds a dead-man’s-trigger in his
hand so that if the hero takes him out everyone will die in the ensuing blast.
Another common plot device is leaving an envelope containing compromising
information about your nemesis with your lawyer, with instructions that “in the
case of my untimely demise, mail this to the Washington Post.”

The terrorist in the above scenario is self-tamper-detecting as well as self-
tamper-responding. This seems to be the most common case: you monitor some
part of yourself (the health of your internal organs, for example), and if tam-
pering is evident you execute the tamper-response (releasing the trigger a split
second before expiring). The second scenario above shows that both detection
and response can be external, however: the lawyer examines the obituaries every
day and, if your name shows up, executes the tamper-response.

Unlike lower order animals like newts and salamanders, humans have very
little regenerative power — we can only regrow some skin and a part of our
liver.

Tamperproofing is, of course, an extremely important part of surreptitious
software. A common form of tamper-detection is to compare a hash computed
over the program to the expected value [19]. Some tamperproofing algorithms
make use of regeneration [20]. to fix parts of a program after an attack. The idea
is to replace a destroyed part with a fresh copy, as shown in Figure 13.

Other types of response are also common: a program can retaliate by (subtly
or spectacularly) self-destructing [21] or destroying files in its environment. For
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Fig. 12. The King snake applies the advertise primitive to fool predators that it
contains venom, even though it does not. (advertise is here abbreviated advert.)

example, the DisplayEater screen motion catcher program will delete your home
directory if you try to use a pirated serial number [22].

4.10 The Dynamic Primitive

Our final primitive, dynamic, is used to model protection techniques which use
dynamic behavior to throw off an attacker. Here, continuous change itself is used
to confuse an attacker. The change can take a variety of forms: fast movement,
unpredictable movement, and continuous evolution of defenses.

Moving faster than your adversary is in many ways the ultimate protection
technique in the animal world. If the cheetah can’t catch you, he can’t eat you!
There is a trade-off between agility and speed on the one hand and physical layers
of protection on the other. A turtle can afford to be slow because he’s carrying
around a thick protective exoskeleton. The Pronghorn antelope (Antilocapra
americana) has made a different trade-off: it can run 98 km/h to get away from
a predator such as the mountain lion which is only able to do 64 km/h. On the
other hand, the antelope is soft and vulnerable on the outside and should he get
caught, it’s game over.

Anyone who has tried to kill a particularly annoying fly knows that while
speed is important, so is agility and unpredictability. Consider, for example,
the fruit fly (Drosophila Melanogaster) which flies in a sequence of straight line
segments separated by 90 degree turns, each of which it can execute in less than
50 milliseconds. Since the movements appear completely random, a predator will
have to be very lucky and persistent to get the best of him.

Evolution itself is, of course, an exercise is continuous change. As pray de-
velop better defenses, predators develop better attacks. HIV is one example of
a particularly successful organism: because of its fast replication cycle and high
mutation rate, a patient will experience many virus variants during a single day.
This makes it difficult for the immune system to keep up and for scientists to
develop effective vaccines.

Mobility is key in modern warfare. During the Gulf War, Iraqi forces suc-
cessfully moved Scud missiles around on transporter-erector-launcher trucks to
avoid detection by coalition forces: “even in the face of intense efforts to find
and destroy them, the mobile launchers proved remarkably elusive and surviv-
able” [23]. Just like the Pronghorn antelope and the turtle have made different



Surreptitious Software: Models from Biology and History 19

U
ni

ve
rs

e ��
pr

og ��
fu

n1
[
⇒ U

ni
ve

rs
e

�
��������
�

pr
og

�
��������

� fu
n1

[

fu
n1

co
py

[
monitor fun1=→ fun1
42! = hash(monitor fun1) ⇒ fun1:=fun1 copy

Fig. 13. Using tamperproofing to regenerate a part of a program that has been
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Fig. 14. Aucsmith’s tamperproofing algorithm [24] uses the dynamic primitive

trade-offs on the scale from slow-but-impenetrable to fast-but-vulnerable, so have
military forces.

Just like in the natural virus world, in the computer virus world change is used
to foil detection. A computer virus that modifies itself for every new generation
will stress the capabilities of the virus detector: it has to find some signature of
the virus that does not change between mutations.

Many software protection algorithms are dynamic, in one form or another.
Aucsmith’s tamperproofing algorithm [24], for example, first breaks up a pro-
gram in chunks which are then encrypted. One chunk is decrypted, executed,
re-encrypted, swapped with another chunk, and the process repeats, as shown
in Figure 14. (Here we’re not modeling the encryption. This could be done with
the map primitive.) This process results in an unpredictable address trace that
an attacker will find difficult to follow, making the code hard to tamper with.

The dynamic primitive is a higher order function taking an object x and a
function f as arguments, iteratively generating 〈fx, f(fx), f(f(fx))), . . .〉.

5 Summary

It’s an interesting exercise to come up with scenarios — biological, historical, or
computational — that can’t be expressed using the primitives we’ve suggested
in this paper. Also interesting is to show that a particular primitive can be
simulated by a combination of others, and thus eliminated from the model. We
invite the community to join us in improving the model in this way.

It should be kept in mind that any Turing complete model (such as a simple
Lisp-based model) would do, but the goal here is not to come up with a minimal-
ist set of primitives. Rather, we want to find primitives which elegantly express
how the natural world has evolved protection strategies, how we as humans think
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about protecting ourselves and, most importantly, of course, how we can protect
computer programs.

We are currently establishing an open experimental environment for surrepti-
tious software, where various malicious attacks, protection techniques, and test
programs from any interested parties can be created, launched, and can interact
with each other according to certain protocols, leading to a “living laboratory”
for evaluating software security through computational experiments [25].
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Abstract. The introduction of self-healing capabilities to software systems could
offer a way to alter the current, unfavorable imbalance in the software security
arms race. Consequently, self-healing software systems have emerged as a re-
search area of particular interest in recent years. Motivated by the inability of
traditional techniques to guarantee software integrity and availability, especially
against motivated human adversaries, self-healing approaches are meant to com-
plement existing approaches to security.

In this paper, we provide a first attempt to characterize self-healing software
systems by surveying some of the existing work in the field. We focus on sys-
tems that effect structural changes to the software under protection, as opposed
to block-level system reconfiguration. Our goal is to begin mapping the space of
software self-healing capabilities. We believe this to be a necessary first step in
exploring the boundaries of the research space and understanding the possibilities
that such systems enable, as well as determining the risks and limitations inherent
in automatic-reaction schemes.

Keywords: Self-healing, reliability, availability, software security.

1 Introduction

Self-healing capabilities have begun to emerge as an exciting and potentially valuable
weapon in the software security arms race. Although much of the work to date has
remained confined to the realm of academic publications and prototype-building, we
believe that it is only a matter of time before deployed systems begin to incorporate
elements of automated reaction and self healing. Consequently, we believe it is impor-
tant to understand what self-healing systems are, why they evolved in the first place,
and how they operate. Given the infancy of the area as a research focus, we only have
a relatively small and, given the potential application scope of self-healing techniques,
highly diverse sample set to draw upon in defining this space. Despite this, we believe
that some high-level common characteristics of self-healing software systems can be
discerned from the existing work.

What, exactly, is a self-healing system? For the purposes of our discussion, a self-
healing software system is a software architecture that enables the continuous and au-
tomatic monitoring, diagnosis, and remediation of software faults. Generally, such an
architecture is composed of two high-level elements: the software service whose in-
tegrity and availability we are interested in improving, and the elements of the system
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that perform the monitoring, diagnosis and healing. The self-healing components can
be viewed as a form of middleware — although, in some systems, such a separation is
difficult to delineate.

Self-healing systems evolved primarily as a result of the failure of other techniques,
whether in isolation or combination, to provide an adequate solution to the problem of
software reliability. More specifically, self-healing techniques try to strike a balance be-
tween reliability, assurance, and performance (with performance generally in an inverse
relationship to the first two). An important difference between self-healing and the tra-
ditional fault-tolerant architectures and techniques is that the former try to identify and
eliminate (or at least mitigate) the root cause of the fault, while the latter generally only
bring the system to a state from which it can resume execution. Thus, fault-tolerant
systems can be viewed as primarily geared against rarely occurring failures.

The diversity of techniques for effecting self-healing reflects both the relative imma-
turity of the field and the large scope of failure and threat models such systems must
cope with. Most work to date has focused on a narrow class of faults and/or the refine-
ment of a specific detection or mitigation technique. Although comprehensive frame-
works have been proposed [1, 2], none has been fully implemented and demonstrated
to date. Although we expect this picture to remain the same for the foreseeable future,
more comprehensive techniques and systems will emerge as we achieve a better under-
standing of the capabilities and limitations of existing proposed approaches.

Finally, we wish to distinguish between block-level system reconfiguration-based
healing, and lower-level structural modification-based healing techniques. The former
treat software as a black box with some configurable parameters, and focus on rear-
ranging the way the system components interact with each other. The latter depend
on specific, “low-level” techniques to detect, mitigate and mask/correct defects in the
software. As a starting point, we focus on the latter approach, both because of our
familiarity with this space and because of the use of such structural-modification tech-
niques as the building elements for system-reconfiguration approaches. To the extent
that software becomes componentized, we believe that these two high-level approaches
are likely to converge in terms of tools and techniques used.

In the remainder of this paper, we will expand on the main three questions we posed
at the beginning of this section: what are self-healing systems, why have they emerged,
and how they operate, using specific examples from the literature.

2 Self-healing Systems: What

At a high level, self-healing software techniques are modeled after the concept of an
Observe Orient Decide Act (OODA) feedback loop, as shown in Figure 1.

The high-level intuition is that, if proactive or runtime protection mechanisms are too
expensive to use in a blanket manner, they should instead be used in a targeted manner.
Identifying where and how to apply protection is done by observing the behavior of the
system in a non-invasive manner. The goal of this monitoring is to detect the occurrence
of a fault and determine its parameters, e.g., the type of fault, the input or sequence of
events that led to the it, the approximate region of code where the fault manifests itself,
and any other information that may be useful in creating fixes.
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Fig. 1. General architecture of a self-healing system. The system monitors itself for indications
of anomalous behavior. When such behavior is detected, the system enters a self-diagnosis mode
that aims to identify the fault and extract as much information as possible with respect to its
cause, symptoms, and impact on the system. Once these are identified, the system tries to adapt
itself by generating candidate fixes, which are tested to find the best target state.

Following identification, the system will need to create one or more possible fixes tai-
lored to the particular instance of the fault. The nature of these fixes depends on types of
faults and the available protection mechanisms. Potential fixes to software faults include
snapshot-rollback, input filtering, increased monitoring or isolation for the vulnerable
process, selective application of any runtime protection mechanism, and others.

Each candidate fix produced by the system may then be tested to verify its efficacy
and impact on the application (e.g., in terms of side effects or performance degradation).
This testing can take several forms, including running pre-defined test-suites, replaying
previously seen traffic (including the input that triggered the fault), etc. If an acceptable
fix is produced, the system is updated accordingly. This can be done through established
patch-management and configuration-management mechanisms, or any other suitable
mechanism.

Note that different fixes, or fixes of different accuracy/performance levels, may be
successively applied as the system spends more time analyzing a fault. For example, the
initial reaction to a failure may be a firewall reconfiguration. After further analysis, the
system may produce a software patch or a content filter that blocks the specific input
that caused the fault. Finally, the system may then replace the specific content filter
with a generalized signature, obtained through signature generalization [3], dynamic
analysis of the targeted software [4], or other means.

3 Self-healing Systems: Why

Despite considerable work in fault tolerance and reliability, software remains notori-
ously buggy and crash-prone. The current approach to ensuring the security and avail-
ability of software consists of a mix of different techniques:
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– Proactive techniques seek to make the code as dependable as possible, through
a combination of safe languages (e.g., Java [5]), libraries [6] and compilers [7, 8],
code analysis tools and formal methods [9,10,11], and development methodologies.

– Debugging techniques aim to make post-fault analysis and recovery as easy as
possible for the programmer that is responsible for producing a fix.

– Runtime protection techniques try to detect the fault using some type of fault
isolation such as StackGuard [12] and FormatGuard [13], which address specific
types of faults or security vulnerabilities.

– Containment techniques seek to minimize the scope of a successful exploit by
isolating the process from the rest of the system, e.g., through use of virtual machine
monitors such as VMWare or Xen, system call sandboxes such as Systrace [14],
or operating system constructs such as Unix chroot(), FreeBSD’s jail facility, and
others [15, 16].

– Byzantine fault-tolerance and quorum techniques rely on redundancy and di-
versity to create reliable systems out of unreliable components [17, 1, 18].

These approaches offer a poor tradeoff between assurance, reliability in the face
of faults, and performance impact of protection mechanisms. In particular, software
availability has emerged as a concern of equal importance as integrity.

The need for techniques that address the issue of recovering execution in the presence
of faults is reflected by recent emergence of a few novel research ideas [19, 20]. For
example, error virtualization [19, 21] operates under the assumption that there exists
a mapping between the set of errors that could occur during a program’s execution
(e.g., a caught buffer overflow attack, or an illegal memory reference exception) and the
limited set of errors that are explicitly handled by the program’s code. Thus, a failure
that would cause the program to crash is translated into a “return with an error code”
from the function in which the fault occurred (or from one of its ancestors in the stack).
These techniques, despite their novelty in dealing with this pressing issue, have met
much controversy, primarily due to the lack of guarantees, in terms of altering program
semantics, that can be provided. Masking the occurrence of faults will always carry this
stigma since it forces programs down unexpected execution paths. However, we believe
that the basic premise of masking failures to permit continued program execution is
promising.

In general, we believe that a new class of reactive protection mechanisms need to be
added to the above list. Some techniques that can be classified as reactive include Intru-
sion Prevention Systems (IPS) and automatically generated content-signature blockers,
e.g., [22]. Most such systems have focused on network-based prevention, augmenting
the functionality of firewalls. However, a number of trends make the use of such packet
inspection technologies unlikely to work well in the future:

– Due to the increasing line speeds and the more computation-intensive protocols
that a firewall must support (such as IPsec), firewalls tend to become congestion
points. This gap between processing and networking speeds is likely to increase, at
least for the foreseeable future; while computers (and hence firewalls) are getting
faster, the combination of more complex protocols and the tremendous increase in
the amount of data that must be passed through the firewall has been and likely will
continue to out-pace Moore’s Law [23].
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– The complexity of existing and future protocols makes packet inspection an expen-
sive proposition, especially in the context of increasing line speeds. Furthermore,
a number of protocols are inherently difficult to process in the network because of
lack of knowledge that is readily available at the endpoints (etc. FTP and RealAudio
port numbers).

– End-to-end encryption, especially of the on-demand, opportunistic type effectively
prevents inspection-based systems from looking inside packets, or even at packet
headers.

– Finally, worms and other malware have started using polymorphism or metamor-
phism [24] as cloaking techniques. The effect of these is to increase the analysis
requirements, in terms of processing cycles, beyond the budget available to routers
or firewalls.

All these factors argue for host-based reactive protection mechanisms.

4 Self-healing Systems: How

Most defense mechanisms usually respond to an attack by terminating the attacked
process. Even though it is considered “safe”, this approach is unappealing because it
leaves systems susceptible to the original fault upon restart and risks losing accumulated
state.

Self-healing mechanisms complement approaches that stop attacks from succeeding
by preventing the injection of code, transfer of control to injected code, or misuse of
existing code. Approaches to automatically defending software systems have typically
focused on ways to proactively or at runtime protect an application from attack. Ex-
amples of these proactive approaches include writing the system in a “safe” language,
linking the system with “safe” libraries [6], transforming the program with artificial
diversity, or compiling the program with stack integrity checking [12]. Some defense
systems also externalize their response by generating either vulnerability [4, 25, 26] or
exploit [27, 28, 29, 30, 3] signatures to prevent malicious input from reaching the pro-
tected system.

Starting with the technique of program shepherding [31], the idea of enforcing the
integrity of control flow has been increasingly researched. Program shepherding val-
idates branch instructions to prevent transfer of control to injected code and to make
sure that calls into native libraries originate from valid sources. Control flow is often
corrupted because input is eventually incorporated into part of an instruction’s opcode,
set as a jump target, or forms part of an argument to a sensitive system call. Recent
work focuses on ways to prevent these attacks using tainted dataflow analysis [32,22,4].
Abadi et al. [33] propose formalizing the concept of Control Flow Integrity (CFI), ob-
serving that high-level programming often assumes properties of control flow that are
not enforced at the machine level. CFI provides a way to statically verify that execution
proceeds within a given control-flow graph (the CFG effectively serves as a policy). The
use of CFI enables the efficient implementation of a software shadow call stack with
strong protection guarantees. However, such techniques generally focus on integrity
protection at the expense of availability.
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The acceptability envelope, a region of imperfect but acceptable software systems
that surround a perfect system, as introduced by Rinard [34] promotes the idea that
current software development efforts might be misdirected. Rinard explains that certain
regions of a program can be neglected without adversely affecting the overall availabil-
ity of the system. To support these claims, a number of case studies are presented where
introducing faults such as an off-by-one error does not produce unacceptable behavior.
This work supports the claim that most complex systems contain the necessary frame-
work to propagate faults gracefully and the error toleration allowed (or exploited) by
some self-healing systems expands the acceptability envelope of a given application.

4.1 Self-healing Techniques

Some first efforts at providing effective remediation strategies include failure-oblivious
computing [20], error virtualization [19,21], rollback of memory updates [29,35], crash-
only software [36], and data-structure repair [37]. The first two approaches may cause a
semantically incorrect continuation of execution (although the Rx system [38] attempts
to address this difficulty by exploring semantically safe alterations of the program’s
environment).

TLS. Oplinger and Lam [35] employ hardware Thread-Level Speculation to improve
software reliability. They execute an application’s monitoring code in parallel with the
primary computation and roll back the computation “transaction” depending on the
results of the monitoring code.

Failure-Oblivious Computing. Rinard et al. [39] developed a compiler that inserts code
to deal with writes to unallocated memory by virtually expanding the target buffer. Such
a capability aims to provide a more robust fault response rather than simply crashing.
The technique presented by Rinard et al. [39] is subsequently introduced in a modified
form as failure-oblivious computing [20]. Because the program code is extensively re-
written to include the necessary checks for every memory access, the system incurs
overheads ranging from 80% up to 500% for a variety of different applications. Failure-
oblivious computing specifically targets memory errors.

Data-structure Repair. One of the most critical concerns with recovering from software
faults and vulnerability exploits is ensuring the consistency and correctness of program
data and state. An important contribution in this area is that of Demsky and Rinard [37],
which discusses mechanisms for detecting corrupted data structures and fixing them to
match some pre-specified constraints. While the precision of the fixes with respect to
the semantics of the program is not guaranteed, their test cases continued to operate
when faults were randomly injected. Similar results are shown by Wang et al. [40]:
when program execution is forced to take the “wrong” path at a branch instruction,
program behavior remains the same in over half the times.

Rx. In Rx [38], applications are periodically checkpointed and continuously monitored
for faults. When an error occurs, the process state is rolled back and replayed in a new
“environment”. If the changes in the environment do not cause the bug to manifest,
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the program will have survived that specific software failure. However, previous work
[41, 42] found that over 86% of application faults are independent of the operating
environment and entirely deterministic and repeatable, and that recovery is likely to be
successful only through application-specific (or application-aware) techniques.

Error Virtualization. Error virtualization [19, 21] assumes that portions of an applica-
tion can be treated as a transaction. Functions serve as a convenient abstraction and
fit the transaction role well in most situations [19]. Each transaction (vulnerable code
slice) can be speculatively executed in a sandbox environment. In much the same way
that a processor speculatively executes past a branch instruction and discards the mis-
predicted code path, error virtualization executes the transaction’s instruction stream,
optimistically “speculating” that the results of these computations are benign. If this
microspeculation succeeds, then the computation simply carries on. If the transaction
experiences a fault or exploited vulnerability, then the results are ignored or replaced
according to the particular response strategy being employed. The key assumption un-
derlying error virtualization is that a mapping can be created between the set of errors
that could occur during a program’s execution and the limited set of errors that the
program code explicitly handles. By virtualizing errors, an application can continue ex-
ecution through a fault or exploited vulnerability by nullifying its effects and using a
manufactured return value for the function where the fault occurred.

Modeling executing software as a transaction that can be aborted has been examined
in the context of language-based runtime systems (specifically, Java) [43,44]. That work
focused on safely terminating misbehaving threads, introducing the concept of “soft ter-
mination”. Soft termination allows threads to be terminated while preserving the stabil-
ity of the language runtime, without imposing unreasonable performance overheads. In
that approach, threads (or codelets) are each executed in their own transaction, apply-
ing standard ACID semantics. This allows changes to the runtime’s (and other threads’)
state made by the terminated codelet to be rolled back. The performance overhead of
that system can range from 200% up to 2,300%.

One approach that can be employed by error virtualization techniques is the one
described by Locasto et al. [45], where function-level profiles are constructed during
a training phase that can, in turn, be used to predict function return values. While this
technique is useful for predicting appropriate return values, especially in the absence of
return type information, it suffers from the same problems as error virtualization, i.e., it
is oblivious to errors.

ASSURE. ASSURE [46] is an attempt to minimize the likelihood of a semantically
incorrect response to a fault or attack. ASSURE proposes the notion of error virtualiza-
tion rescue points. A rescue point is a program location that is known to successfully
propagate errors and recover execution. The insight is that a program will respond to
malformed input differently than legal input; locations in the code that successfully
handle these sorts of anticipated input “faults” are good candidates for recovering to a
safe execution flow. ASSURE can be understood as a type of exception handling that
dynamically identifies the best scope to handle an error.

DIRA. DIRA [29] is a technique for automatic detection, identification and repair of
control-hijacking attacks. This solution is implemented as a GCC compiler extension
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that transforms a program’s source code adding heavy instrumentation so that the result-
ing program can perform these tasks. The use of checkpoints throughout the program
ensures that corruption of state can be detected if control sensitive data structures are
overwritten. Unfortunately, the performance implications of the system make it unus-
able as a front-line defense mechanism.

Vigilante. Vigilante [4] is a system motivated by the need to contain rapid malcode.
Vigilante supplies a mechanism to detect an exploited vulnerability (by analyzing the
control flow path taken by executing injected code) and defines a data structure (Self-
Certifying Alert) for exchanging information about this discovery. A major advantage
of this vulnerability-specific approach is that Vigilante is exploit-agnostic and can be
used to defend against polymorphic worms.

A problem that is inherent with all techniques that try to be oblivious to the fact
that an error has occurred is the ability to guarantee session semantics. Altering the
functionality of the memory manager often leads to the uncovering of latent bugs in the
code [47].

5 Self-healing Systems: Future Directions

Given the embryonic state of the research in self-healing software systems, it should
come as no surprise that there are significant gaps in our knowledge and understand-
ing of such systems’ capabilities and limitations. In other words, this is an extremely
fertile area for further research. Rather than describe in detail specific research topics,
we outline three general research thrusts: fault detection, fault recovery/mitigation, and
assurance.

Fault Detection. One of the constraining factors on the effectiveness of self-healing
systems is their ability to detect faults. Thus, ways to improve fault detection at lower
memory and computation cost will always be of importance. One interesting direction
of research in this topic concerns the use of hardware features to improve fault detection
and mitigation [48]. Another interesting area of research is the use of collections of
nodes that collaborate in the detection of attacks and faults by exchanging profiling
or fault-occurrence information [49]. Although such an approach can leverage the size
and inherent usage-diversity of popular software monocultures, it also raises significant
practical issues, not the least of which is data privacy among the collaborating nodes.

We also believe that the next generation of self-healing defense mechanisms will re-
quire a much more detailed dynamic analysis of application behavior than is currently
done, possibly combined with a priori behavior profiling and code analysis techniques.
This will be necessary to detect application-specific semantic faults, as opposed to the
“obvious” faults, such as application crashes or control-hijack attacks, with which ex-
isting systems have concerned themselves to date. Profiling an application can allow
self-healing systems to “learn” common behavior [45]. The complementary approach
is to use application-specific integrity policies, which specify acceptable values for (as-
pects of) the application’s internal runtime state, to detect attacks and anomalies [50].
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Fault Recovery/Mitigation. To date, most systems have depended on snapshot/recovery,
often combined with input filtering. The three notable exceptions are error virtualiza-
tion, failure-oblivious computing, and data-structure repair. The former two techniques
can be characterized as “fault masking”, while the last uses learning to correct possibly
corrupt data values.

The technical success of self-healing systems will depend, to a large extent, on their
ability to effectively mitigate or recover from detected faults, while ensuring system
availability. Thus, research on additional fault-recovery/masking/mitigation techniques
is of key importance, especially when dealing with faults at different (higher) seman-
tic levels. Similar to fault detection, two high-level approaches seem promising: pro-
filing applications to identify likely “correct” ways for fault recovery [46], and using
application-specific recovery policies that identify steps that the system must undertake
to recover from different types of faults [50].

Assurance. Finally, to gain acceptance in the real world, self-healing systems and tech-
niques must provide reasonable assurances that they will not cause damage in the course
of healing an application, and that they cannot be exploited by an adversary to attack
an otherwise secure system. This is perhaps the biggest challenge faced by automated
defense systems in general. Self-healing software systems of the type we have been dis-
cussing in this paper may need to meet an even higher standard of assurance, given the
intrusiveness and elevated privileges they require to operate. Although to a large extent
acceptance is dictated by market perceptions and factors largely outside the technical
realm, there are certain measures that can make self-healing systems more palatable to
system managers and operators. In particular, transparency of operation, the ability to
operate under close human supervision (at the expense of reaction speed), “undo” func-
tionality, and comprehensive fix-testing and reporting capabilities all seem necessary
elements for a successful system. Although some of these elements primarily involve
system engineering, there remain several interesting and unsolved research problems,
especially in the area of testing.

6 Conclusions

We have outlined some of the recent and current work on self-healing software systems,
describing the origins and design philosophy of such systems. We believe that self-
healing systems will prove increasingly important in countering software-based attacks,
assuming that the numerous research challenges (and opportunities), some of which we
have outlined in this paper, can be overcome.
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Abstract. Secure protocols rely on a number of assumptions about the
environment which, once made, free the designer from thinking about
the complexity of what surrounds the execution context.

Henceforth, the designer forgets about the environment and moves on
proving her algorithm correct, given the assumptions. When assumptions
do not represent with sufficient accuracy the environment they are sup-
posed to depict, they may become the door to successful attacks on an
otherwise mathematically correct algorithm. Moreover, this can happen
as unwitting to systems as a Trojan Horse’s action.

We wish to discuss the theoretical underpinnings of those problems
and evaluate some recent research results that demonstrate a few of those
limitations in actual secure protocols.

1 Introduction

Secure protocols rely on a number of assumptions about the environment which,
once made, free the designer from thinking about the complexity of what sur-
rounds the execution context. Henceforth, the designer forgets about the envi-
ronment and moves on proving her algorithm correct, given the assumptions.
When assumptions do not represent with sufficient accuracy the environment
they are supposed to depict, they may become the door to successful attacks on
an otherwise mathematically correct algorithm. Moreover, this can happen as
unwitting to systems as a Trojan Horse’s action.

Intrusion Tolerance has become a reference paradigm for dealing with faults
and intrusions, achieving security (and dependability) in an automatic way. How-
ever, there are issues specific to the severity of malicious faults (attacks and
intrusions) that made the problems and limitations introduced above very vis-
ible and, what is more, very plausible. Intrusion-tolerant protocols that deal
with intrusions much along the lines of classical fault tolerance, like for example
Byzantine agreement, atomic broadcast, state machine replication, or threshold
secret sharing, have become a reference in this field.

Using them as example, we wish to discuss the theoretical underpinnings of
those problems and evaluate some recent research results that demonstrate a
few of those limitations in actual secure protocols.
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2 Classical Distributed Algorithms Design

The design of distributed algorithms follows a well-determined path and fault/
intrusion-tolerant (FIT) algorithms are no exception. The basic proposition un-
derlying the design of FIT algorithms is, informally:

FIT - Given n processes and f a function of n, and a set H of assumptions
on the environment, then for at least n − f correct processes, algorithm A
satisfies a pre-defined set of properties P , i.e. executes correctly.

Classical distributed algorithms design has focused its attention on “algorithm
A satisfies a pre-defined set of properties P, i.e. executes correctly”, consider it
the mathematics viewpoint: assumptions are accepted as a given, and it is proved
that the algorithm satisfies the properties.

There is nothing wrong with this in principle, but how about looking critically
at other parts of the proposition? For example, “a set H of assumptions on
the environment”. In fact, the usual path is to start with the weakest possible
assumptions, normally, in distributed systems security, one talks about arbitrary
failure modes, over asynchronous models. The unfortunate fact is that such weak
assumptions restrain the amount of useful things that can be done. Namely:

– algorithms are safe, but normally inefficient in time and message complexity;
– deterministic solutions of hard problems such as consensus, Byzantine Agree-

ment or State Machine Replication with Atomic Broadcast are impossible,
a result known as FLP impossibility [1];

– furthermore, timed problems (e.g., e-commerce, online stock-exchange, web
applications with SLAs, SCADA, etc.) are by definition impossible in a time-
free world.

If efficient/performant FIT algorithms are sought, one has to assume con-
trolled failure modes (omissive, fail-silent, etc.). Moreover, for solving the above
problems of determinism or for building any timely services (even soft real-time),
one must relax the asynchrony assumption and assume at least partially synchro-
nous models. However, this brings a problem: these algorithms will only work
to the coverage of those assumptions. Unfortunately, relaxing these assumptions
amounts to creating attack space for the hacker, unless something is done to
substantiate them:

– controlled failures are hard to enforce in the presence of malicious faults;
– partial synchrony is susceptible to attacks on the timing assumptions;
– even in benign but open settings (e.g., Internet), synchrony is difficult to

implement.

As such, there is a significant body of research continuing to assume arbitrary
failure modes over asynchronous models, instead turning itself to weakening the
semantics of what can be achieved in those conditions.
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Some results look very promising and useful if one is to solve non-timed prob-
lems with the highest possible coverage:

– toning down determinism, for example, through randomised versions of the
above-mentioned algorithms, e.g. consensus;

– tone down liveness expectations, for example, through indulgence, which
means that the algorithms may not be guaranteed to terminate, but they
will always keep safety;

– use other (sometimes weaker) semantics which do not fall under the FLP
impossibility result, for example, through reliable broadcast, secret sharing,
quorums, etc.

Another alternative is toning down the allowed fault or intrusion severity, for
example, through hybrid fault models [2], which imply that the quorum of f
faults that is accepted from a set of processes is divided amongst different fault
types, for example Byzantine and crash, f = fB + fc.

When even the simplest timing is needed, the system can no longer be time-
free, for example if a periodical operation or the timely trigger of an execution
are needed. In that case, one has to tone down asynchrony, for example, through
time-free or timed partially synchronous algorithms [3,4]. Some solutions to cir-
cumvent FLP, even non-timed, rely on a form of partial synchrony as well, even-
tual synchrony, such as the failure detectors [5]. However, these only fare well
under benign failure modes.

Unlike the former, these two alternatives pull the boundary of arbitrary fail-
ures and of asynchrony, respectively, a bit back, with the corresponding risks in
coverage.

3 Assumptions as Vulnerabilities

It is usually said that one should make the weakest assumptions possible. Let
us question why. For example, people assume that large-scale (i.e., Internet)
systems are asynchronous not for the sake of it, but just because it is hard to
substantiate that they behave synchronously. So, confidence (coverage) on the
former assumption is higher than on the latter one. Likewise with assuming
Byzantine vs. benign behaviour, if the system is open or not very well known. In
other words, the asynchrony/Byzantine assumptions would lead to safer designs
in this case, though probably not the most effective and efficient.

“Every assumption is a vulnerability”

is a frequently heard quote, which of course leads us right onto the above-
mentioned path of arbitrary failure modes over asynchronous models. Why? Be-
cause it looks like we are not making any assumption: we do not assume anything
about the behaviour of processes; we do not assume anything about time.

The caveat is that asynchrony/Byzantine yield so weak a model that it pre-
vents us from doing some important things, as shown earlier. When problems
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offer significant hardness, algorithm designers often insert some synchrony in the
underlying model, or relax the arbitrary behaviour just a bit, trying to circum-
vent these difficulties.

According to the quote above, these extra assumptions are vulnerabilities.
Furthermore, whilst some are explicit and can deserve attention from the de-
signer, such as the above-mentioned hybrid faults or timed partial synchrony,
others are implicit, like assuming that the periodical triggering of a task, a time-
out, or the reading of a clock, are meaningful w.r.t. real time in an asynchronous
model.

Observation 1 - These subtle feathers of synchrony introduce vulnerabilities
which often go undetected, exactly because they are not clearly assumed. In
fact, they are bugs in the model, as there are bugs in software: the algorithm
designer relies that the system will perform as the assumptions say, but
the latter conceal a different behaviour, just as buggy software performs
differently than assumed. The consequence is that one may no longer have
safe designs with regard to time, despite using asynchronous system models.

4 On Resource Exhaustion

Back to the “pure” Byzantine/asynchronous model, under this no-assumptions
model we tend to rely on the fact that we are not making assumptions on time
or behaviour, and consider the system extremely resilient. We assume that the
system lives long enough to do its job. Can we, really?

In fact, we are still making important assumptions: on the maximum number
of allowed faults/intrusions f ; on the harshness of the environment or the power
of the attacker, respectively for accidental or malicious faults, giving the speed at
which the latter are performed; about fault independence or on the expectation
that faults/attacks do not occur simultaneously in several nodes or resources.
That is, accepting these assumptions as vulnerabilities, those systems, despite
following an asynchronous and Byzantine model, are in fact subject to several
threats:

– unexpected resource exhaustion (e.g. the number of replicas getting below
threshold);

– attacks on the physical time plane (faults and attacks produced at too fast
a rate versus the internal pace of the system);

– common-mode faults and attacks (simultaneous attacks against more than
one replica).

These problems have been recognized by researchers, who have devised some
techniques to keep systems working long enough to fulfil their mission, such as en-
suring a large-enough number of replicas at the start and/or using diversity (e.g.,
different hardware and software, n-version programming, obfuscation) to delay
resource exhaustion. However, with static or stationary f -intrusion-tolerant al-
gorithms, even in asynchronous Byzantine environments, it is a matter of time
until more than f intrusions occur.
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This prompts us for looking critically at other parts of the proposition FIT
presented in section 2, like for example “for at least n− f correct processes”. In
this way, we accept that the proposition is conditional to there being n − f or
more correct processes. What if we end-up with less than n− f ?

Two things may have happened here. That fact may come from an inadequate
implementation or design decision, and there is really nothing the algorithm de-
signer can do about it: an adequate algorithm over an inadequate implementation.
However, the problem may have a more fundamental cause, something that might
be determined at algorithm design time. Were it true, and we would have an in-
adequate algorithm to start with, and no design or implementation to save it.

How should theory incorporate this fact? For example, by enriching propo-
sition FIT with a safety predicate that would assert or deny something like
“Algorithm A always terminates execution with at least n−f correct processes.”.

This predicate was called Exhaustion Safety, which informally means that
the system maintains the required resources, e.g., the amount of processes or
nodes, to guarantee correct performance in the presence of intrusions [6]. As
a corollary, an f -intrusion-tolerant distributed system is exhaustion-safe if it
terminates before f +1 intrusions being produced. In consequence, a result that
would establish at design time that the above predicate would almost never be
true or not be guaranteed to be true throughout execution of algorithm A, for
whatever real setting, would imply that the algorithm, under the assumed model,
would be inadequate to achieve FIT, because it could not be exhaustion-safe.

There has been some research trying to solve the “n−f” issue, that is, trying
to keep systems working in a perpetual manner or, in other words, achieving
exhaustion-safety. The techniques used have been called reactive or proactive
recovery (e.g., rejuvenating, refreshing) [7].

Some of these works have assumed an asynchronous model with arbitrary
failures in order to make the least assumptions possible. However, given the
hardness of the problems to solve, which include for example being able to trig-
ger rejuvenations periodically or reboot a machine within a given delay, these
systems end-up making a few assumptions (some of which implicit) that in nor-
mal, accidental-fault cases, would have acceptable coverage.

However, in the malicious fault scenario, which they all address, these assump-
tions will certainly be attacked, giving room for another set of “Trojan-horse”-
like pitfalls. What leads to the pitfall is that in normal conditions, clocks and
timeouts in asynchronous systems seem to have a real time meaning, but the
truth is that a clock is a sequence counter, a timeout does not have a bounded
value. System execution and relevant assumptions follow the internal timeline,
but attacks can follow the physical timeline. In consequence, there is no formal
relation between both, the two timebases are said to be free-running. In this case,
attacks are produced by hackers in real time (external, physical time), which can
in that way delay or stall recovery until more that f intrusions are produced.
These problems would have been unveiled if the predicate resource-exhaustion
had been used and evaluated at algorithm design time [8].
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Observation 2 - The explanation of why systems that are otherwise correct ac-
cording to the stated assumptions under the asynchronous model used, may
fail, is simple. Under attack, the internal timeline can be made to slide w.r.t.
the physical timeline at the will of the attacker. For example, for a given
speed of an attack along the physical timeline, the internal timeline can be
made to progress slowly enough to enable the intrusion. However, since the
system is asynchronous, it is completely oblivious to and thus unprotected
from, this kind of intrusions: the slow execution could be a legitimate ex-
ecution. In consequence, harmful as they may be, these intrusions do not
even entail a violation of the system’s explicit assumptions and resource
exhaustion comes unwittingly.

5 On the Substance of Assumptions

Why do the things discussed in the previous sections happen? Let us introduce
a postulate:

Postulate 1: Assumptions and models should represent the execution envi-
ronment of a computation in a substantive and accurate way.

In Computer Science (like in Physics), assumptions should be substantive and
models accurate, that is, they should represent the world where the computations
are supposed to take place, faithfully enough.

In this scenario, an assumption need not necessarily be a vulnerability: if the
assumption depicts the world “as is”, there is nothing special that the adversary
can attack there. Interestingly, in the formal framework after this postulate, the
initial motto might be re-written as:

“Every non-substantiated assumption is a vulnerability”

One should not avoid making assumptions, but instead: make the least set
of assumptions needed to solve the problem at hand, making sure that they have
satisfactory coverage, i.e. that they represent the environment faithfully enough.
However, it is not always the case that such a postulate is followed.

Take the synchrony dimension and consider an observation made about it:
“synchronism is not an invariant property of systems” [9]. In fact, systems are
not necessarily either synchronous or asynchronous, the degree of synchronism
varies in the time dimension: during the timeline of their execution, systems
become faster or slower, actions have greater or smaller bounds. However, and
very importantly, it also varies with the part of the system being considered, that
is, in the space dimension: some components are more predictable and/or faster
than others, actions performed in or amongst the former have better defined
and/or smaller bounds.

This opened the door to some research on hybrid distributed systems mod-
els [10] which helped address and solve some of the contradictions expressed in
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the previous sections. Suppose that we endorsed such a hybrid model, where dif-
ferent subsystems can follow different assumptions with regard to time or failure
modes.

Assuming, (1) a synchronous channel on a synchronous subsystem coexisting
with its asynchronous counterparts under hybrid distributed systems model, is
totally different from assuming, (2) that the former is achieved over an environ-
ment following the asynchronous model. Under (2), the hypothesis (synchrony)
deviates from reality (asynchrony), that is, it has limited substance and as such
is more prone to failure, for example, under attack by an adversary. This fragility
does not exist at the start under (1), since the hypothesis (synchrony) matches
reality (synchrony). Besides, coverage can be made as high as needed by con-
struction, by using architectural hybridisation, a system design technique that
matches hybrid distributed systems models [11].

In fact, the same comments apply to a set of constructs proposed recently by sev-
eral researchers, whose common distinctive feature is the assumption of ’stronger’
components in otherwise ’weak’ systems: watchdog triggers, real time clocks and
timeouts, periodic task dispatchers, crypto chips, trusted component units, syn-
chronous or faster communication channels. Some of these systems contain an un-
spoken hybridisation, in the sense that they propose hybrid components, but work
with a homogenous model and architecture. Those constructs would perhaps be
better deployed under a computationalmodel that understands hybridisation, and
an architecture that substantiates the ’stronger’ assumptions, to avoid the risk of
failures, either accidental or deriving from successful attacks to the vulnerabilities
caused by the model mismatches introduced [8].

Hybrid distributed systems models, versus homogeneous models, have the
advantage of letting different parts of the system follow different assumptions
and models. As such, they accurately represent the limit situations causing the
problems discussed in Sections 3 and 4.

6 Conclusion

In this paper, we alerted to the fact that, in computer science, assumptions
go well beyond simple mathematical abstractions. This certainly applies to the
design of secure systems and algorithms. Assumptions should represent with suf-
ficient accuracy the environment they are supposed to depict, else they amplify
the attack space of the adversary and may become the door to security failures of
an otherwise mathematically correct algorithm. We exemplified situations where
this occurs in two sets of scenarios.

For example when arbitrary failure modes over asynchronous models are as-
sumed but some constraints to behaviour and asynchrony are inserted, without
necessarily being made explicitly, let alone enforced. These subtle feathers of
synchrony introduce vulnerabilities which often go undetected, exactly because
they are not clearly assumed. They become natural targets to the adversary.

The second scenario concerned the problem of resource exhaustion, in the
same asynchronous models. The speed of attack is fundamental to determine
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the pace at which replicas can fail in a FIT algorithm, and in consequence
help determine the speed of the defence mechanisms implemented by the same
algorithm. However, we showed that no relation between both can be formally
defined, because they develop along different timebases which are free-running.
However, such a relation is sometimes forced, with the nasty consequence that
the system becomes vulnerable in a way that subsequent intrusions may even not
entail a violation of the system’s explicit assumptions and resource exhaustion
may come unwittingly.

Both scenarios define what we may metaphorically call “Trojan-horse”-like
pitfalls: the algorithm designer relies that the system will perform as the as-
sumptions say, but in both cases the latter conceal a different behaviour.
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Abstract. Smart cards are portable tamper-resistant cryptographic devices that 
play a key role in digital security.  This paper reviews the latest use of smart 
cards in securing networks, online services, operating systems, and card-holder 
identity. Smart card network authentication is routinely used on GSM and 3G 
networks, and this paper shows how the same infrastructure can be extended to 
perform WiFi access point authentication. Securing online services with smart 
card is traditionally performed using public key cryptography and certificates, 
or using one-time-passwords. This paper presents new smart card authentication 
methods that either allow to reuse already issued cards or infrastructure, or 
provide stronger card-to-server mutual authentication. Finally, the paper will 
show how smart cards and trusted platform module have complementary roles 
for securing the operating systems, and the use of smart cards in identity 
frameworks such as liberty alliance or Microsoft cardspace. 

Keywords: smart card, authentication, security, trusted computing, liberty 
alliance. 

1   Introduction 

Smart cards are portable tamper-resistant cryptographic devices that play a key role in 
digital security. Billions of smart cards have been deployed to secure the Global 
System for Mobile Communications (GSM) or 3rd Generation (3G) wireless networks, 
to perform secure payments, or to provide secure documents, such as electronic 
passports or identity cards. Smart cards have also been used to secure personal 
computers (PC) but with less overwhelming acceptance, mostly to authenticate users 
in a corporate environment. 

Securing PCs with smart cards is becoming a growing concern in the consumer 
environment, to better secure existing services, such as home banking online payment 
services, or to secure emerging services such as triple-play services. 

Home banking, online payment, or valued online services are traditionally 
protected by passwords, which caused them to be the attack of key loggers, phishing, 
pharming, or DNS poisoning attacks to retrieve the user password and impersonate 
the real user. Smart cards as two-factor authenticators are important components for 
securing the end-user identity and credentials[1]. Two-factor authentication is based 
on something you know, such as the personal identification number (PIN) for a smart 
card, and something you have, such as the smart card itself. 
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Smart cards are also key components for securing triple-play or quadruple-play 
services provided by telecommunication operators. Triple-play is the provisioning of 
telephony, high-speed internet access, and telephony over a single broadband 
connection. Quadruple-play is the triple-play with the addition of wireless telephony, 
in which WiFi compatible GSM/3G handsets are switching to Voice-over-IP (VoIP) 
over the internet broadband connection when the user is at home. Smart cards can 
provide strong authentication of the end-user to the network and to triple-play 
services, but also provide user credentials and triple-play client applications 
portability and integrity. 

In the first part, we review how smart cards can be used to authenticate the user at 
the network layer to retrieve an IP address for the PC. The next section is addressing 
the use of smart cards to authenticate the user at the application level to get access to 
internet services. Finally, the last section describes how smart card can provide 
portability and integrity of the client applications. 

2   Network Authentication 

2.1   Virtual Private Network with PKI 

Virtual Private Network (VPN)  can be established on PCs with smart cards using the 
Extensible Authentication Protocol[2]. Windows networking components typically 
establish a VPN using the EAP-TLS[3] protocol based on public key infrastructure 
(PKI). A client X509 certificate and its associated private key is used to perform 
mutual authentication of the user to the remote VPN gateway. The involved 
cryptography is performed using the Crypto Application Programming Interface 
(CAPI)[4] (API). Windows operating systems include pure software base and 
extended cryptographic service providers (CSP), in which case the VPN is established 
using a certificate and a private key stored on the PC. However, CSPs supporting 
dedicated smart cards can be deployed on the PC, in which case the VPN is 
established by computation in the smart card, with the private key securely stored in 
the smart card, which results in two-factor strong authentication. After successful 
mutual authentication, a virtual network interface is created, that tunnels packets over 
the regular broadband PC connection. 

2.2   WiFi Authentication 

For WiFi authentication to a hot-spot, windows wireless networking components can 
use EAP-TLS thru a supplicant, which is a system library that allows to authenticate to a 
WiFi access point, also known as hot-spot. However, telecommunication operators are 
not keen to use EAP-TLS for authentication their customers toward WiFi hot-spots, one 
of the main burden being the deployment of the PKI infrastructure, including certificate 
generation, deployment and management, and the operation of certificate authorities and 
certificate revocation lists. For this reason, two EAP protocols have been implemented 
for Wireless LAN authentication: the EAP-SIM[5] and EAP-AKA[6] protocols, that 
have the advantage of using the mobile network operators cryptographic infrastructure. 
The EAP-SIM interface between the PC and the SIM is standardized by the ETSI[7] 
and the WLAN smart card consortium[8]. 
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The EAP-SIM provides strong authentication and session key distribution using the 
GSM subscriber identity module (SIM). On the PC, the SIM is inserted into a card 
reader, or can be available with a USB device form factor. GSM authentication is based 
on a challenge/response mechanism. The SIM card and mobile operator server share a 
secret key Ki. The A3/A8 authentication algorithm that runs on the SIM card is given a 
128-bit random number as a challenge, and computes a 32-bit response and a 64-bit key 
Kc from the challenge and Ki. The challenge, 32-bit response and Kc constitute a triplet. 
On the server side, the EAP messages are processed by a radius server connected to the 
subscriber Home Location Register (HLR) thru an IP/SS7 gateway. The radius server 
can retrieve a set of triplets from the HLR and perform authentication. Multiple 
authentication triplets can be combined to create authentication responses and 
encryption keys of greater strength than individual triplets. EAP-SIM also includes 
network authentication, user anonymity and fast re-authentication. 

Fig. 1. Network level strong authentication with smartcards. Corporate networks tend to use 
PKI with EAP-TLS, either thru the remote access services or 802.11 wireless network 
components. EAP-SIM/AKA is better fit for authenticating consumers towards public hot 
spots, since it allow reuse of the mobile network server infrastructure for authentication and 
billing. 

EAP-SIM and EAP-AKA have been implemented as wireless network supplicants 
in both PCs and Windows mobile GSM/3G handsets. On handsets, EAP-SIM/AKA 
allow the subscriber to obtain an IP connection from a wireless hot-spot, either in a 
public spot or at home in case of quadruple-play subscription, and perform Voice-
over-IP calls or any other IP client application. EAP-SIM/AKA provide means to 
mobile network operators for authenticating subscribers based on their existing back-
office infrastructure. 

3   Internet Services Authentication 

Successful network authentication provides the PC with an IP connection, either thru 
a virtual network interface and tunneled over the broadband connection for a VPN, or 
thru a wireless network interface for 802.11. However, separate application level 
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authentication is still required to have access to internet services for several reasons. 
First, several users could share the PC, and the user of the internet services, e.g. a 
home banking application, might not be the same user as the user authenticated at the 
network level. Moreover, the internet services might be provided by different business 
actors than the one providing the network connection. Finally, some services might 
require explicit user consent or proof of presence. For these reasons, different 
application level methods have been developed to authenticate a user to an internet 
service. These authentication are mostly used for web server access from a browser, 
but can be extended to any client protocol, such as the Session Initialization Protocol 
(SIP) for Voice-over-IP. 

3.1   Authentication with PKI and Certificates 

Browsers can mutually authenticate with remote servers using the SSL/TLS protocols. 
The server and end-users are provided with a X509 certificates containing a public 
key, and a separate private key. The client private key is either stored in a secure 
location on the PC and protected by password, or stored in a smart card and protected 
by PIN. In the later case, the private key cryptography is performed in the smart card, 
and the private key is never read from the card. In some cases, the private/public key 
pair is generated by the smart card, ensuring that the private key is never available 
outside the card. In the SSL/TLS protocol, the certificates and private keys are used to 
mutually authenticate the server and client and negotiate a session key for data 
encryption. 

Browsers typically use external components to perform the required cryptography, 
and these components are interfaced with standard APIs, such as CAPI[4] for Internet 
Explorer and PKCS#11[9] for the Mozilla/firefox/Netscape family of browsers. The 
use of standard APIs allow the plug-in of different implementations of these 
cryptographic components, called cryptographic service providers (CSP) for CAPI 
and cryptoki for PKCS#11. In particular, CSPs and cryptokis supporting smart cards 
can perform two-factor strong authentication for establishing a SSL/TLS sessions. 

PKI strong authentication has been used essentially within the corporate 
environment, because of the burden of deploying the hardware (smart card readers 
and smart cards), provisioning the client software (smart card reader drivers and CSP 
or cryptoki components), and managing the certificates. On the server side, no 
modification of the internet servers is required, since SSL/TLS is supported in 
virtually all the web servers, or can be implemented using hardware SSL accelerators. 

3.2   One-Time Passwords 

A popular alternate method for web access authentication using smart cards is the 
one-time password (OTP). An OTP is a generated password valid only once. Several 
software or devices can be used to generate the OTP, including personal digital 
assistants, mobile phones, dedicated hardware tokens, the most secure mean being 
smart cards which provide tamper-resistant two-factor authentication: a PIN to unlock 
the OTP generator (something you know), and the OTP smart card itself (something 
you have).
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Until recently, OTP solutions were based on proprietary time-based or event-based 
algorithms. Recently, OATH-HOTP[10] was defined as an open standard by major 
actors of the industry, to ease interoperability between the devices and servers from 
different vendors. The HOTP algorithm is based on a secret key and a counter shared 
by the device and the server, and uses standard algorithms such as SHA-1 and 
HMAC. On the other hand, smart cards issuers such as financial institutions are 
pushing OTP algorithms based on their already deployed cryptographic infrastructure 
[11,12] to decrease the cost of the OTP devices and associated server infrastructure. 
These solution only require deployment of simple electronic devices with a display 
and a push button, the OTP being calculated using the payment smart card.  

Fig. 2. Internet service authentication with smart card based OTP. The OTP is generated in non 
connected mode using a smart card inserted into a handset or a dedicated device with push 
button and display, and the end-user has to key in the password into the browser. In connected 
mode, the smart card is inserted into the PC and an associated browser plug-in can perform 
automated form-filling of the password into the browser. 

OTP has several advantages over the PKI authentication: it does not require 
deployment of CSPs or card and reader drivers, nor the management of X509 
certificates. OTP is also easy to integrate in solutions that already support simple 
login and password, in which case only the server has to be modified to validate the 
password with the OTP server. For authentication servers such as RADIUS servers, 
supporting the OTP requires the addition of a dedicated plug-in that performs OTP 
validation. These plug-in generally interface with a dedicated cryptographic hardware 
that holds a master key that allows computation of the secret key corresponding to an 
individual OTP smart card. 

OTP have the disadvantage of requiring the user to key-in the password, but above 
all is sensible to security attacks such as the man-in-the-middle attack, since there is 
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no mutual authentication of the PC and the internet server. An attacker can retrieve a 
valid login/password using a mock-up site, and impersonate the user to the real 
internet web site. 

3.3   Extensible Web Authentication Framework 

For network authentication, the EAP allows for arbitrary authentication methods such as 
EAP-TLS and EAP-AKA. The EAP messages are transported without interpretation 
over the network components, e.g. the WiFi access point or supplicant, and are only 
interpreted by the smart card and the radius server authentication policy. An web 
extensible authentication framework has been built on this principle, for browser 
authentication with EAP[13]. 

The extensible authentication framework components are shown in figure 3. When 
connecting to a web site thru a browser, the user is directed to an authentication web 
address that holds an EAP gateway java servlet. By accessing the EAP servlet, the 
browser loads a signed ActiveX or plug-in, the Card Access Module (CAM). The 
EAP servlet and the CAM are then acting as gateways that carry transparently EAP 
messages between the smart card and the Radius server. As a result, any protocol can 
be implemented on top of this framework, the content of the messages being known 
only by the smart card and the radius server authentication policy. 

Fig. 3. The extensible strong authentication framework for internet web services authentication. 
The Card Access Module (CAM) and EAP servlet are acting as gateway to pass EAP messages 
between the smart card and the radius server. Since the messages are not interpreted by the 
CAM and the servlet, any authentication method can be implemented. In this figure, the EAP-
SIM authentication is illustrated. 

This extensible web authentication framework has been used to implement browser 
authentication with the EAP-AKA algorithm[13], as described in figure 3, and 
authentication with an Eurocard-Mastercard-Visa (EMV)[14] payment smart card, as 
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described in figure 4. In this EMV strong authentication, a complete payment 
transaction with a zero amount is performed to authenticate the user. 

This extensible authentication framework has the advantage over the PKI standard 
browser authentication to be open to new protocols, and hence allow the reuse of an 
existing infrastructure and not require a PKI deployment. Typically, financial 
institutions can reuse their issued cards and server infrastructure by implementing an 
authentication based on the EMV specifications, or mobile network operators can 
reuse their existing authentication and billing servers and deploy SIM cards for PC 
authentication to their subscribers. 

Compared to the OTP authentication, this framework can implement protocols 
with mutual authentication of the card and server, such as EAP-AKA, and hence 
avoid man-in-the-middle attacks. 
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Fig. 4. End-to-end EMV browser authentication. The authentication is equivalent to a zero-
amount EMV payment transaction. 

3.4   Web Authentication for Identity Frameworks 

Given the cost of the deployment and operation of a strong authentication solution for 
controlling the access to web services, some frameworks have been developed to 
ensure a clear separation between the web service provider, i.e. the actor that provides 
a service that requires authentication, and the identity provider, i.e. the actor that 
authenticate and identify to third-parties the end-user. Actors that already have an 
authentication infrastructure and deployed credentials, such as mobile network 
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operators or banks, can position as identity providers and leverage on their 
infrastructure, whereas web service providers can focus on their core business and 
outsource authentication. 

Liberty Alliance is a consortium of industries that defines a set of specifications for 
identity federation and single-sign-on[15]. Identity federation in liberty alliance is 
based on the Security Assertion Markup Language (SAML) defined by OASIS [16]. 

Fig. 5. Liberty Alliance Single-Sign-On. The actual authentication is not standardized in liberty 
alliance specifications. 

As shown in figure 5, the single-sign-on (SSO) procedure is performed thru 
redirection of the user browser. The service provider redirects the authentication 
request to the identity provider (IDP). The IDP authenticates and identifies the user, 
and return thru the browser a SAML token to the service provider. The service 
provider can optionally validate further the token offline, and returns access to the 
service if the token is valid. The SSO requires a one-shot initialization phase called 
federation, in which the IDP and service provider exchange an opaque identifier to the 
user. This opacity ensures that the IDP and service provider do not share the 
respective identity of the user. 

The authentication method is not specified yet by liberty alliance, which requires 
custom integration of the various methods in the different IDP implementations. IDP 
operators are free to deploy any strong authentication they see fit. In particular, 
Mobile network operators have a strong incentive to use their deployed SIM cards and 
servers for operating an IDP. One option is to use the EAP-AKA/SIM web 
authentication described earlier. This solution has the drawback to require the issuing 
of new SIM cards dedicated to PC authentication. Another option is to use the OTA 
channel and existing SIM cards and the user handset [13], as described in figure 6. 
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In this solution, called SIMStrong-over-SMS, when the end-user is redirected to 
the IDP for authentication an end-to-end EAP-SIM protocol is performed between the 
SIM card in the handset and the Radius server. All EAP messages are exchanged over 
SMS between the card and the IDP, and as standard radius messages over UDP 
between the IDP and the radius server. A SIM toolkit applet [17] in the SIM card is 
prompting for user-consent on the handset, and on consent and successful 
authentication, the SAML token is returned by the IDP to the browser, who is then 
authenticated towards the service provider. 

The same strong authentication over the SMS channel has been implemented for 
the recent Microsoft Cardspace framework. Cardspace is a claim based identity 
management system, in wich a web service provider, called Relying Party in the 
Cardpace framework, is requesting identity claims to the user. The user can select a 
virtual card thru a card selector that provides the required claims. Some cards are 
user-managed, i.e. the claims are not certified, but other claims are certified and 
managed by an identity provider. To retrieve the claims of a managed card, the user 
must authenticate to a Secure Token Server (STS) which returns an encrypted and 
signed token. 

The authentication means for cardspace are limited to login/password, Kerberos 
and X509 certificates. Strong authentication with smart cards is performed either 
using OTP, or X509 certificates. For OTP strong authentication, the managed card is 
a login/password card in which the user has to key-in the OTP generated by the smart 
card device, and the STS is connected to an authentication server that validates the 
OTP, with all the pros and cons of the OTP discussion above. The X509 strong 
authentication is based on PKI, in which the STS authenticates the user using a 
challenge-response mechanism based on the X509 certificate of the user in the 
managed card and a private key stored in the smart card. Cardspace client components 
are accessing the smart card thru a new API, the Crypto API Next Generation (CNG). 
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Smart cards providers typically write a smart card mini-driver[19], also known as a 
card module, to interface their smart card to the CNG.  

The cardspace client framework, i.e. the selector and authentication protocol, is a 
closed-source component provided by Microsoft and part of the Vista operating 
system. It is therefore impossible to add an authentication method to the client 
framework, besides Kerberos, login/password and X509 authentication. Using a 
second channel, such as the over-the-air channel for mobile network operators allow 
to perform any type of strong authentication between the STS and the card. This has 
been implemented for SMS strong authentication[18] as  illustrated in figure 7. 

Fig. 7. Cardspace strong authentication over SMS. The secure token server is authenticating the 
user over the air, and retrieving user’s claims inside the SIM card. A SIM toolkit applet is 
prompting the user for consent.  

This second channel can also be a separate TCP/IP connection between the STS 
and a proprietary component executing on the end-user PC. 

4   PC Software Integrity 

In the most secure authentication protocols, the security is performed end-to-end 
between the smart card and the authentication server. The PC and network component 
in between are just acting like transparent gateway, and cannot decrypt the content of 
the exchanged messages. However there are several cases where software on the PC 
has to interact with the card, for example a VoIP soft-phone needs to access the smart 
card to authenticate the PC to the SIP network. Attackers could impersonate the VoIP 
softphone to the card, and perform service fraud by calling premium rate numbers, 
content theft of the phonebook, or wire tap all calls. Similarly, an attacker could hack 
the browsers and perform man-in-the-middle attacks on connected devices that 
generate OTP and form-fill browser pages. 
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To counter these attacks, several initiatives are attempting to validate platform or 
software integrity towards the smart cards. These initiatives include the Trusted 
Platform Module. 

4.1   Trusted Platform Module and Smart Cards 

To address trust concerns while ensuring interoperability and privacy protection, the 
computer industry has endorsed the specification of hardware-based security 
computing platforms through the Trusted Computing Platform Alliance (TCPA) then 
the Trusted Computing Group (TCG). From a technical standpoint, a trusted platform 
requires (i) a dedicated hardware, the trusted platform module (TPM) implementing 
the trusted functions, (ii) extra firmware and software implementing measurement and 
cryptographic functions, and (iii) finally an enhanced operating system. 

Initially, the role of the smart cards in the Trusted Computing arena was often 
blurred by the fact that beyond the strict usage of platform authentication and 
attestation, the TPM was often presented as a ‘general-purpose’ hardware security 
device able to provide the same services than a smart card. Many papers described the 
TPM simply as a smartcard soldered to the motherboard and the industry has 
considered that the TPM should be used to provide all the security services to both 
platform and users of the platform. This position has put TPM and smart cards in a 
situation of direct competition. However, it has been demonstrated that smart cards 
still brings value in three key areas[20-21]: (i) the user convenience. The smart card is 
mobile and can interact with many devices compared to the TPM that is physically 
attached to the platform (ii) the privacy. The end-user has a direct control over his 

Fig. 8. TPM Authentication workflow where the platform delegates to the smart card part of the 
computation of the authentication protocol, in this case the inAuth input value [20] 
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credentials and is allowed to express an explicit consent when presenting them or not 
(iii) the user authentication. The user presence is guaranteed by the smartcard 
introduction and PIN presentation. 

Concerning the user authentication, access to the TPM protected object is a major 
issue. This access is protected by a 20-bit shared secret key, the Authorization Data 
(AD). Knowledge of this 20-bit key, generally in the form of a hash of a password, is 
a complete proof of ownership of the TPM. New authorization work-flow were 
proposed [21] to provide two-factor authentication to the TPM with a smart card, and 
have the additional advantage of not exposing the AD outside the card, as described in 
figure 8. A new working group of the TCG, the authentication group, has been 
recently created to specify a standard mechanism to allow authentication sources such 
as smart cards, to authorize TPM actions [22]. 

However, the TPM approach for software integrity is not currently fit for large 
deployment in the consumer arena, such as for home banking or internet payment 
applications: not all PC are equipped with a TPM, its associated software stack, and it 
is not supported by all operating systems. An alternate solution is to deploy and store 
the critical software on the smart card. 

4.2   USB Smart Cards 

The smart cards are conventionally accessed thru the ISO7816-3 and ISO7816-4 
interfaces, i.e. on a half-duplex serial link between the card and a smart card reader. 
Interfacing the card to the PC thus required the deployment of a smart card reader and 
its associated device driver. To ease software deployment, a standard reader interface 
has been defined by the industry, the USB Chip/Smart Card Interface Devices 
(CCID). Most modern readers now support the CCID standard, and therefore use the 
same device driver, available on latest operating systems. However, the latest smart 
cards are USB devices that can implement several USB device interfaces, and do not 
require a smart card reader since they are connected directly to a USB port of the PC. 
The USB Device class Integrated Circuit Card Device (ICCD)[23] has been issued to 
define a standard USB interface to a USB card, as it was the case for the CCID 
standard for readers. With the ICCD interface, legacy applications access the card 
thru the PCSC interface and view the USB card as a card inside a smart card reader. 

In the same time, the processing power of the card and the available storage has 
increased, and smart cards can now implement two additional interfaces: the classical 
mass-storage USB interface, where the card is seen as a removable disk or CDROM 
drive, and the CDC-EEM interface[25], where the card is seen as a remote TCP/IP 
node connected thru a network interface card. 

The mass-storage interface of the card is used for portability and integrity of the 
applications, as well as privacy of the user files. Typically, the smart card aware 
applications can be stored on the mass-storage partitions, avoiding any software 
deployment on the PC and ensuring the integrity of these portable applications. The 
access to the card can be protected by a PIN, and a launch pad can give instant access 
to the applications stored on the card. The on-card mass-storage can be partitioned in 
separate read-only or read-write partitions, eventually protected by PIN, which 
provide privacy of the on-card files. 
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Fig. 9. USB smart card. From the PC, the smart card is seen as a file system with read-only and 
read-write partitions, a smart card reader, and a network interface card. All three interfaces are 
optional. 

In addition, since the portable applications are stored on the card and accessible by 
the card operating system, security mechanisms can be implemented to ensure that the 
card is accessed by un-tampered applications. In the xID card[26], the portable 
application is a host agent that can perform end-to-end TLS security for internet web 
access authentication. This host-agent is stored on the mass-storage partition on the 
card, and contains a symmetric key randomly generated at each card insertion. This 
symmetric key is used to calculate session keys used to establish a secure channel 
between the host agent and the card. Additionally, these session keys are renewed on 
a regular basis, and the renewal procedure involves a calculation of the thumbprint of 
the host-agent on random memory locations, ensuring the integrity of the host-agent. 

The network interface provides access to the card using the standard TCP/IP 
application protocols. This allow for the development of secure applications using 
standard internet technology. For example, the smart card can implement a web 
server, hosting static content such as html pages and javascript, and dynamic content 
such as servlets. 

5   Conclusion 

Smart cards are tamper resistant device that can dramatically enhance the security of 
the PC. The smart cards can be used for strong-authentication to gain access to the 
network or to web service providers, to ensure integrity and portability of a wide 
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range of applications, and to provide privacy for the user identity attributes and 
personal data. The deployment of USB smart cards and applications is now seamless, 
since they do not require smart card readers and can be accessed thru standard USB 
interfaces such as the mass-storage interface. Moreover, the required application and 
environment can be stored on the card, solving the issue of software provisioning. 

As a result, smart cards will play a key role in securing triple-play and quadruple-
play services for telecommunication operators, and services for internet service 
providers.  
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Abstract. The spread of viruses and worms has severe implications on the 
performance of virtually any network. Current methods to stop the propagation 
of malicious code rely on anti-virus signature recognition to prevent hosts from 
being infected. Unfortunately, the latency between the introduction of a new 
virus into a network and the implementation/distribution of a patch can be 
significant. Within this period, a network can be crippled by the abnormally 
high rate of traffic generated by infected hosts. Previous research has provided a 
mechanism for controlling the rate at which a host can make new network 
connections when exhibiting virus-like behavior. Extending this technology to 
network routers provides the benefit of network protection without the need for 
individual client support, and serves as an initial step in developing a virus-
resilient network. This paper/presentation reflects on the unique challenge of 
adapting the Virus Throttle mechanism to HP ProCurve network switch routers. 
Also discussed is the method of proving that it works in realistic network 
conditions to protect against worms without interfering with normal network 
traffic. 

Keywords: Switch, router, virus, worm, behavior, throttle.  

1   Introduction 

Security issues are not going away.  
More networks are being attacked and threatened, in more devious and creative 

ways, than ever before. Incidents range from viruses and worms to Trojan horses and 
internal sabotage.  

According to the 2006 CSI/FBI Computer Crime and Security Survey [1] of U.S. 
corporations, government agencies, financial institutions, medical institutions and 
universities, the majority of organizations experienced computer security incidents 
during the previous year. Of those that experienced incidents, nearly one-quarter 
reported six or more attacks during the year.  

At the same time, the information technology (IT) industry itself is evolving in 
ways that make it both more important and more difficult to secure networks. Some 
important factors include:  

• Openness driven by the Internet, and the need to make resources available – 
securely – to more people;  
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• An increasingly mobile workforce, and the challenge of making the network 
available whenever and wherever people want to connect; and  

• The convergence of voice, video and data over a single network, which can 
deliver greater efficiency if they can be run over a single network, thus 
overcoming the hassle and expense of running multiple networks.  

The costs of security are rising, as are the costs of failing to provide effective network 
security. We at ProCurve assert that organizations must consider the network 
infrastructure as an integral component of any comprehensive security solution and 
use methodologies and technologies that HP ProCurve has championed, such as with 
its Adaptive Networks[2] and ProActive Defense[3] technology visions.  

2   Adaptive Networks and ProActive Defense 

The right network infrastructure can help in meeting business goals, enabling an 
organization to compete effectively by fortifying security, reducing complexity across 
the organization and increasing productivity. 

In an era of change, organizations must be concerned about managing complexity, 
countering security threats that accompany open and wireless networks, making 
information and resources accessible to those that need them, handling the burdens 
associated with regulatory compliance, and supporting current and future applications. 
Many organizations underestimate the importance of the right network infrastructure 
in IT’s role of making the organization nimble and effective.  Too often, even IT-
savvy executives make the mistake of treating a network as simply “plumbing” for 
moving data around.  In an era of fast-paced global competition, this mistaken 
approach to networking can be disastrous. 

The ideal network infrastructure ensures that information assets remain secure 
from internal and external attacks, helps an organization become both internally and 
externally productive, and is easy to configure, operate and maintain.  The network 
infrastructure must be built to flex and change with the organization and application 
needs.  In a word, an organization must have a network that can adapt. 

What is an adaptive network? It is a cohesive, flexible network infrastructure that 
enables an organization to: 

1. fortify security, 
2. reduce complexity and 
3. increase productivity. 

Importantly, an adaptive network is: 

− Adaptive to users, which means personalization.  Each user enjoys a 
personalized network experience, for the benefit of both the user and the 
organization.  At the same time, personalization enables organizations to protect 
information and assets by controlling users’ access, thus strengthening security.  
And because personalization in an adaptive network happens automatically, it is 
simple for network managers to deliver this powerful capability. 

− Adaptive to applications, which means application enablement and optimization.  
Adaptive networks let you get the most from all your applications.  They are 
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able to easily integrate whatever comes along, whether it’s IP telephony, video 
conferencing, IP video surveillance, Web-based applications, on-demand 
computing, collaborative applications, video on demand, next-generation 
applications or future applications that have not yet even been conceived. 

− Adaptive to organizations, which means evolving and responding to changing 
needs.  Adaptive networks let organizations focus on their business and goals, 
rather than devoting exorbitant time, money and resources to managing the 
network and keeping it running. Organizations retain complete control over their 
network’s operation, but implementation of their policies is handled 
automatically and centrally by an adaptive network. 

With an adaptive network, an organization can focus on its core business so it 
becomes and remains more competitive within the rapidly evolving global ecosystem.  
The network infrastructure becomes a strategic asset helping an organization thrive 
and compete.  Users get access to the information and resources they need to be most 
effective – while the critical information, resources and assets remains available over 
the network, secure from unauthorized users and safe from attacks. 

From an IT perspective, key IT goals fulfilled by an adaptive network include 
reducing complexity, increasing return on overall IT investments, establishing a 
service-oriented architecture (SOA), consolidating technologies wherever possible 
and optimizing Web services, distributed applications, collaboration, virtualization 
and personalization. 

2.1   Basis for the Adaptive Network: Intelligence 

In ProCurve’s adaptive networks vision, intelligence – of the right kind and in the 
right location – is the key ingredient.  This outlook derives directly from the ProCurve 
Adaptive Edge Architecture (AEA)[4], the network industry’s first strategic blueprint 
to meet the challenges of adding performance, security and intelligence at the network 
edge while providing a single strategy for a secure, mobile and converged network. 

The AEA is significant because it contrasts with the competitive approach, which 
comprises a collection of strategies resulting in a complex and technically unwieldy 
“network of networks.”  ProCurve’s AEA strategy – providing “control to the edge” 
with “command from the center” – was a breakthrough when first introduced and now 
has become widely accepted. 

The AEA presented a stark contrast to the prevailing view of networks as core-
centric, with the edge populated by unintelligent switches and connectivity devices.  
In contrast, ProCurve understood that changing business and technology needs 
demanded a network that could scale to accommodate more robust applications and 
capabilities – and that this could be achieved only with intelligent devices at the client 
edge of the network. 

Built on an AEA foundation, an adaptive network must have embedded 
intelligence that allows it to understand the user, the policies established by the 
organization, the full range of applications and the needs of the organization itself.  In 
an adaptive network, intelligence is distributed throughout the network, with 
emphasis placed at the network edge, where users and devices connect – and where 
traffic ultimately enters and exits the network. 
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2.2   ProCurve ProActive Defense 

ProCurve’s comprehensive security vision and strategy – ProCurve ProActive 
Defense – delivers a trusted network infrastructure that is immune to threats, 
controllable for appropriate use and able to protect data and integrity for all users.  
The three main pillars of the ProActive Defense strategy are as follows: 

• Access Control: Proactively prevents security breaches by controlling which 
users have access to systems and how they connect in a wired and wireless 
network. 

• Network Immunity: Detects and responds to internal network threats such as 
virus and worm attacks; monitors behavior and applies security information 
intelligence to assist network administrators maintain a high level of network 
availability. 

• Secure Infrastructure: Secures the network for policy automation from 
unauthorized extension or attacks to the control plane; includes protection of 
network components and prevention of unauthorized managers from 
overriding mandated security provisions; also includes privacy measures to 
ensure the integrity and confidentiality of sensitive data: protection from data 
manipulation, prevention of data eavesdropping, end-to-end VPN support for 
remote access or site-to-site privacy, and wireless data privacy. 

Figure 1 depicts the relationship between the three security “pillars” together, 
regulatory compliance and the adaptive edge architecture. 

Fig. 1. ProCurve security solutions framework 

2.2.1   Simultaneous Offense and Defense 
A unique aspect of the ProCurve ProActive Defense vision and strategy is that it 
combines both the security offense and security defense at the same time and, most 
importantly, at the network edge. This combined offense and defense is possible only 
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because ProActive Defense is based on Adaptive EDGE Architecture principles, 
which drive intelligence to the network edge while retaining centralized control and 
management. 

2.2.2   Offense 
The ProActive (offense) piece, which is primarily about access control, is a 
comprehensive way of managing access to the network, dealing with all types of 
users: everything from an uncontrolled user to an authenticated user to a fully trusted 
user. 

Today, a multitude of devices connect to the network, including laptops, IP phones, 
peripherals, PDAs and various wireless devices as well as traditional desktop 
computers. It is essentially impossible for IT departments to mandate a specific 
operating environment for all devices that access the network. As a result, it is vital to 
employ a proactive access control solution that is comprehensive and capable of 
identifying and controlling access for all users and device types. The access control 
solution must be capable of proactively validating the integrity and operating state of 
all users and devices. 

2.2.3   Defense 
The defense piece of the ProCurve ProActive Defense starts with a trusted network 
infrastructure that is reliable, self-identifying and fully authenticated. 

At the same time, the infrastructure must remain plug-and-play and easy to 
manage. Security is not effective if it is too complex to implement or if it degrades the 
performance of the overall system. For that reason, the ProCurve trusted network 
infrastructure includes built-in threat management and anomaly detection. These 
capabilities are embedded features that promote the defensive security posture of the 
trusted network infrastructure. 

2.2.4   How ProCurve Implements ProActive Defense 
Recognizing that network security is a process rather than a discrete solution, and that 
it must arise holistically from the network infrastructure itself, ProCurve weaves 
security capabilities throughout its network infrastructure and offerings. 

Here are some highlights of how ProCurve implements its ProActive Defense 
strategy: 

• ProCurve builds defensive security features into its switches, access points and 
other hardware, enabling the creation of a trusted network environment. 

• ProCurve-designed network processor chips – notably, the fourth-generation 
ProVision™ ASIC[5] – embed policy enforcement capabilities into the 
Adaptive EDGE Architecture. The ProVision™ ASIC is built into the recently 
introduced ProCurve Switch 5400/3500 Series products and will be included in 
future products, as well. 

• Integrated security and performance management, via ProCurve Manager 
(PCM) network management software and ProCurve Network Immunity 
Manager (NIM) [6], allows network security to be automated as well as 
pervasive, and it takes the complexity out of security management. 
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• Distribution of intelligence to the edge of the network enables effective 
proactive access control, which is enacted by ProCurve Identity Driven Manager 
(IDM) 2.0 [7], a software module for ProCurve Manager Plus (PCM+). IDM 
allows organizations to define network access policies that enforce secure access 
to the network and provide dynamic security and performance configuration to 
network ports as users connect. IDM lets network administrators proactively 
control access to the network based upon user or device identity, location, time 
of day and an end point’s integrity. 

A clear example of a security technology that captures the essence of adaptive 
networks and embodies the ProActive Defense mantra is the Virus Throttle feature 
present on several ProCurve infrastructure products.  The virus throttle feature broke 
new ground for advanced security functionality for traditional network infrastructure 
devices when first introduced.  

3 Virus Throttle: From HP Labs to ProCurve  

Hewlett-Packard laboratories became interested in virus/worm phenomena in 2001 
and began researching alternative methods to reduce their negative effects.  Their 
work resulted in what has now become known as the HP Virus Throttle, which was 
made public in 2003 [5].  At the heart of the HP virus throttle is the assumption that 
hosts, i.e. an end-user machine such as a laptops or desktops, behave unequivocally 
different when infected with a worm versus when uninfected. The behavioral 
difference that can be noted between infected versus uninfected hosts is in the number 
of connections a given hosts attempts to generate. A connection was defined as a TCP 
SYN packet sent from a given host (e.g. IP 10.0.0.1) to another host (e.g. IP 10.0.0.2) 

The HP lab researchers noted that the typical host running common network 
applications, such as email or web-browsing, does not need create many new 
connections to other machines within multi-second time windows.  This behavior 
clearly contrasted with the behavior of a worm infected host.  Hosts infected with 
worms, such as SQL Slammer[9], create hundreds to several thousand connections 
per second.  The obvious and easily detected behavioral delta between infected versus 
uninfected led the HP lab researchers developing an elegant, yet simple, algorithm for 
throttling the number of connections a host can generate.   

3.1   Need for Adaption 

The original design and implementation of the HP Virus Throttle was entirely within 
the confines of an individual host. The HP labs researchers developed an 
implementation based on Linux and the added the virus throttle algorithm to the 
network transmit path. It maintains a working set of recently connected to addresses, 
and a queue of outbound connection requests. The throttle monitors all outbound 
connection attempts, allowing through those whose destination address is in the 
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working set, and placing the others on the queue – significantly slowing the 
propagation of any worm. At regular intervals the throttle removes the top element of 
the queue, forwards all queued connection requests to its destination address and adds 
the address to the working set in place of one of the existing entries. 

The memory and CPU requirements of the original throttle algorithm were 
designed to provide an acceptable overhead on a desktop PC or server, dealing with 
its own network traffic. Implementing it on the 5300xl[10]1 network switch router 
was a much bigger challenge, because of the following technical and product 
requirements: 

• It had to handle multiple sources of traffic (for example up to 192 interfaces on a 
ProCurve 5300xl switch) versus just as single source. 

• Most traffic is routed in our ProVision™ switch ASICs for performance reasons 
and our switch ASICs had neither the processing richness nor system resources to 
support the original virus throttle algorithm. 

• Only a very small proportion of traffic is sent management processors (based on a 
general CPU) to be dealt with in (much slower) software. 

• Performance was critical: the throttle could not add significant performance 
overheads. There is no way every packet can be examined in software against. 

• Memory space is a scarce resource: the original host-based throttle algorithm needs 
to able to store a couple of hundred queued packets – there is not that much spare 
memory on a network switch. 

• Switch hardware could not be redesigned in order to implement throttling. We had 
to work with the hardware as designed and leverage existing datapath processing 
blocks in novel ways. 

• The ProCurve implementation had to work independent of transport protocol 
(TCP, UDP, ICMP). 

• The ProCurve implementation had to have the ability to enable/disable throttling 
based on several criteria, including port and/or source address. 

3.2   Resulting Throttle Algorithm  

In order to understand the mechanics of the resulting virus throttle from ProCurve 
Labs R&D, it is first necessary to understand the basic architecture of the ProCurve 
5300xl switch, which was the first platform to offer virus throttle capability.   

The ProCurve 5300xl is a chassis-based routing switch with the following 
capability characteristics: 

− Offers layer 2, 3 and 4 Ethernet switching in 4-slot or 8-slot modular form factors. 
− Supports a maximum of 192 10/100 ports or 128 10/100/1000 ports. 
− 76.8Gbps crossbar switching fabric for wire-speed intra- and inter-module 

switching with up to 48 million pps (packet per second) throughput on ProCurve 
ProVision™  switch ASICs. 

− Layer 3 IP routing: provides routing of IP at media speed and a 10,000 route table 
size. 

1 ProCurve 5300xl Switch was first platform to implement virus throttle technology. 
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Fig. 2. ProCurve 5308xl-48G Routing Switch 

The 5300 series routing switch consists of a chassis switch with a fabric chip on 
the backplane bus (the master) and individual classification/forwarding engines on 
each of the blades (the slave). In the master/slave system, new packets arrive on the 
ports and the switch ASIC checks an internal table known as the Hardware IP 
Address Table.  If the source/destination addresses match host entries present in the 
hardware table, the packet is simply hardware routed and no additional value add 
processing is performed. If there is no corresponding entry for either source or 
destination, the packet is sent through the exception path, namely to the master CPU 
(on the backplane), and is considered learn. This exception path allows new route 
calculations to be programmed into the hardware ASIC, but also served as a natural 
point to insert our ProCurve virus throttle algorithm.  

All traffic redirected to the master CPU for route calculations is first passed 
through our virus throttle implementation.  In a nutshell, the ProCurve throttle blocks 
sources that send a burst of packets to more than a certain number of new IP 
addresses at a sustained rate higher than some threshold. The algorithm has two 
parameters: the rate threshold and a sensitivity that determines the length of the burst.  

The throttle is armed when a source sends packets to "new" addresses at a rate 
consistently greater than that determined by the rate threshold. While armed, the 
switch hashes destination addresses of IP packets into the range [0 .. N-1], where N is 
the sensitivity. It does this as long as the source sustains the rate; if the instantaneous 
rate falls below the rate threshold, the switch stands down, and discards the tracking 
data for the source.  

When the switch has seen exactly N distinct hash values (i.e., the complete set {0, 
1, 2, ..., N-1}), the switch blocks the offending source for a predefined interval of 30 
seconds to 5 minutes. After the penalty period has elapsed, the switch unblocks the 
offending source and clears its tracing data. Alternatively, the throttle may be 
configured to block the host indefinitely until explicitly re-enabled by a network 
administrator.  

N == sensitivity (number of bits) 
R == rate threshold (expressed as a time interval) 

do forever: 
   hash_table[*] = 0 
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   while rate threshold > time since last unrecognised
   dest addr for this src addr: 

      bit number = fnv32a(dest addr) modulo N 
      hash table[bit number] = 1 
      if hash table[0 .. N-1] all == 1: 
         set block on src address 
         drop all pending packets for src addr 
      else 
         register dest addr for this src addr 
         forward packet 

Thus we were able to reduce the memory requirements of the ProCurve virus 
throttle down to N bits per source address as opposed to approximately 2 Kbytes on 
the HP Labs host-based algorithm. 

4   Proving ProCurve Virus Throttle Works 

When making claims about security properties of network equipment it is especially 
important to test these properties in realistic scenarios. Testing of the throttle had to 
answer three critical questions: 

1. Does the hash algorithm work? (How certain can we be that the hash-based 
technique will be effective?) 

2. Does the resulting throttle provide the desired mitigation against worms? 
3. Can we show that it doesn’t interfere with normal traffic? 

4.1   Analysis of Hash-Based Approach 

At the heart of the ProCurve throttle algorithm is the connection tracking table based 
on hashing and accumulating a complete N set within a given time frame.  For the 
hashing operation we chose the fnv32a() hash function given its good reputation for 
being fast, well-behaved, and in the public domain[11].  In order to verify that our 
fnv32a hash-and-accumulate approach worked, we developed a simulator that would 
allow us to determine the typical run-length (i.e. the number of consecutive packets 
from a worm the switch would let pass before blocking the source) for different hash 
set sizes.  

We code the ProCurve throttle algorithm using the fnv32a function and n-bit 
(where n is the switch sensitivity) bitmap. For each value of n, we ran 10,000 trials, 
each trial determining the number of uniform random 32-bit numbers (representing 
destination IP addresses in packets from a single source) it took to trip the throttle.  
We recorded the minimum and maximum numbers and calculated the mean and 
standard deviation.  These results appear in Table 1.  

The cumulative distribution curves reveal how likely a switch at a given sensitivity 
level is to meet some limit on the number of rogue packets forwarded. For example, if 
the switch is to stop a worm within 20 packets 90% of the time, the sensitivity must 
be set to 7 or less. 
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Table 1. Behavior of the fnv32a hash-bitmap based throttle algorithm 

Fig. 3. Cumulative distributions of run lengths 

The frequency distribution graph shows how the “spread” of run-lengths increases 
with the sensitivity (n). The rising side of the curve gives an indication of how likely 
the throttle is to react to legitimate bursts of packets, as seen with NetBIOS – the 
further to the left, the more likely false positives are to occur. The falling edge of the 
curve gives an idea of how many potentially infectious packets may pass through the 
switch in the worst case before the throttle blocks the source. 

In establishing the type of distribution, we asserted that the behavior of the hash-
based throttle approach algorithm is effectively the same problem as follows: how 
many times does an n-die have to be thrown before all n faces appear at least once.  
Assuming that we were only interested in the number of trials until first success, 
whereby success was defined as seeing an event (face of a die, index to a bit map) that 
we had not seen before, we conjectured that we were possibly dealing with a 
geometric distribution.  
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Fig. 4. Frequency distributions of run lengths 

Again using the n-side die analogy, before a n-sided die is thrown for the first time 
(or in the case of the hash-algorithm the arrival of a packet with a specific destination 
address which we hash), the probability of success (i.e. throwing a value we have not 
seen before) is n/n, or 1.  The expected number of throws, E0(X) is therefore 1.  As the 
second throw is made, one face has already been seen and therefore the probability of 
throwing it again (i.e. a failure) is 1/n, so the probability of throwing one we have not 
seen is (n-1)/n.

In a geometric distribution, the expected value for the number of trials is given by: 

E(X) = 1/P(success) 

Thus, having seen one face, we would expect to have to throw the die an average of 
E1(X)=1/((n-1/n) or n/(n-1) times taken over many trials. Once we have seen two 
faces, the probability of throwing a value we have not seen is now (n-2)/n and the 
expected number of throws, E2(X) to achieve this is the reciprocal, or n/(n-2). If we 
carry on in this way until there is just one face left unseen, the probability of success 
is 1/n, and the expected number of trials En-1(X) is thus n.

Therefore, the expected number of throws we have to make in total is the sum of 
all these n expected values: 

E(X) = E0(X) + E1(X) + E2(X) + … + En-1(X) 

which is 

n/n + n/(n-1) + n/(n-2) + … + n/2 + n/1 

which when rearranged is 

n(1 + 1/2 + 1/3 + … + 1/(n-1) + 1/n) 

While the series in brackets is simple, there is no straightforward formula for 
calculating an exact value.  Fortunately, we were only interested in a few values of n 
and the table below shows the expected versus observed results for difference values 
of n.  
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Table 2. Expected number of distinct address (using geometric distribution approach) needed 
to hash to n different value and observed average run of 10,000 trials for difference values of n

In switch terms, n is the sensitivity and E(X) is the expected number of new 
destination addresses a source has to generate in a burst for the switch to block it.  

Our analysis of the ProCurve throttle’s hash-based approach demonstrated that it 
followed a geometric distribution that exhibited what on paper appeared good worm 
squelching capability.  That is, let only a few number of worm traffic through before 
clamping down the offender.  

4.2   Analysis with Real Network Traffic 

Encouraged by positive results from the hash-based analysis, we undertook an 
analysis of the ProCurve throttle with real network traffic.  Instead of attempting to 
create a synthetic traffic model, we reverted to capturing traffic for two weeks at an 
LAN edge switch within HP’s network, upstream from roughly twenty, mostly 
Windows, a few Linux and handful of HP-UX end-user systems.  We reduced the raw 
data to files containing just the IP address, TCP/UDP port numbers, and packet 
timestamps that taken altogether comprised approximately 35 million packets.  

We then implemented a module in our throttle simulation to "replay" these packets 
in simulation time, preserving the intervals between packets and the full range of 
addresses. There are, of course, some limitations to this approach. It is a replay, not a 
simulation of real systems and their behaviors. For example, blocking a source 
address in real life would likely change the pattern of packets sent to that address by 
other systems (i.e. retries, missed connections, and so forth). For our purposes, 
however, this decided this was not a problem. 

In these tests, we set up a series of simulated switches with different parameters. 
Sensitivity varied from 2 to 16 in increments of 2, while the rate threshold varied 
exponentially from 0.01 to 3 seconds, approximating 10^(n/2 – 2). We replayed 7 
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days' worth of captured traffic through each simulated switch, and counted the 
number of times the rate-threshold was triggered, the number of times the switch 
blocked an address, and the numbers of packets forwarded and dropped. 

Fig. 5. Packets dropped due to false positives 

Since the traffic was from healthy systems exhibiting a range of normal behaviors, 
the object was to find which combinations of parameters admitted all or most traffic 
without incident.  

In figure 6, there are three distinct groups of curves corresponding to different 
sensitivity levels: 

• Sensitivity of 2: causes a relatively large number of packets to be dropped, with 
a marked increase in the rate for rate thresholds greater than 0.1 seconds. Looking 
at the simulation log files suggests that many of these packets are completely 
“innocent”. This is probably unacceptable level of packet loss in a production 
network. 
• Sensitivities of 4–8: drops around half the number of packets as n=2, but is 
stable for rate thresholds up to a second The logs suggest most of these packets are 
due to NetBIOS behavior; thus, on some types of networks, these values might not 
cause noticeable problems. 
• Sensitivities of 10 and up: the switch drops relatively few packets and is stable 
for rate thresholds up 3 seconds. The logs reveal some NetBIOS packets being lost 
at a sensitivity of 10, and no packets dropped for 12-16. 

We tested the ProCurve virus throttle by recording two weeks of real traffic from a 
busy network within HP. We built a simulation of the network switch and the throttle 
algorithm and replayed the real traffic patterns into the simulated switch and observed 
the results. We also implemented simulations of real and artificial worms and fed the 
traffic from them into the switch, both on their own and combined with real traffic 
patterns. A switch implementation was tested on a network with a mix of legitimate 
traffic and generated traffic exhibiting the behavior of a worm. 
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Fig. 6. Source blocking due to false positives 

Our simulations showed that the throttle triggers reliably in the presence of worm 
traffic and interferes minimally with normal traffic. In particular: 

1. Using the hash function as described above, the number of packets needed before 
the throttle blocks an infected source follows a compound geometric distribution. 
The sensitivity N controls the average number of packets that escape on to the 
network before the throttle blocks the infected source. 

2. The throttle reliably detects and blocks real and artificial worms. The rate threshold 
must be higher than the gap between worm packets. (The recommended value 
exceeds the slowest observed worm by a factor of 100.) 

3. The throttle interferes minimally with normal observed traffic for sensitivities of 
10 and greater. 

On the basis of the simulations, it was determined that a reasonable setting for the 
switch might be a sensitivity of 12 and a rate threshold of 1 second (or 1 Hz). The 
most variation in settings will come from adjusting the sensitivity: a setting of 4 will 
provide aggressive throttling while 16 will be rather permissive. 

4.2.1   Attack Traffic Results 
For our exploration of the ProCurve throttle with attack traffic, we developed a small 
set of simulated worms. Two, CodeRed II and Sapphire/Slammer are based on worms 
that are well known and which have caused considerable trouble in their time. A third, 
nicknamed Sweeper, is designed to probe the response of the switch more 
systematically. 

Code Red (II) was the worm that sparked HP Lab’s interest in throttling and other 
countermeasures. It is not a particularly fast worm: it generates around 100 packets a 
second, each to a different address. It generates target addresses using an interesting 
scheme that attempts to exploit locality of reference in networks. 1/2 of the addresses 
it generates are in the same CIDR Class B address space (e.g, 15.144.*.*), and 3/8 of 
the addresses are in the same Class A space (e.g, 15.*.*.*). The remainder are 32-bit 
random numbers. 
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Sapphire, or Slammer, provides a contrast with Code Red II. Unlike many worms, 
Sapphire propagates itself with a single, relatively short packet. It is extremely 
vigorous, generating hundreds or even thousands of packets a second. If Sapphire has 
a saving grace, it's that its address generation algorithm is flawed, so that it never 
sends packets to large chunks of the IP 32-bit address space. This may prevent 
spreading through a given network, but the high volume of traffic is problem enough. 

Sweeper is a simulated worm designed to help characterise the throttle response. It 
starts sending infection packets slowly - eg, 0.25 Hz - and gradually increases the 
frequency until it reaches its maximum. The start and end rates, and the rate of change 
are all configurable. In other respects, Sweeper borrows from Code Red, notably the 
address generation scheme (1/2 same class B, 3/8 same class A, 1/8 random). 

The tests with simulated worms give two significant results. First, the rate 
threshold must be greater than the time between worm-generated packets by a 
comfortable margin. Here is what happens with Code Red II. Figures 5 and 6 are 
taken from a simulation of 120 seconds following a single Code Red infection in a 
Class B network. 

Fig. 7. Code Red slips past a small rate threshold 

As observed in real life (and simulated here), Code Red generates packets at 
around 100 Hz, which is quite slow compared with other worms. At a rate threshold 
of 0.01 seconds, the switch lets most worm traffic through. Some inter-packet gaps 
are small enough to alert the switch, but others allow the switch to stand down before 
it blocks the source. The exception is for a sensitivity of 2. 
With the switch not dealing with the problem, the traffic goes off the scale, and the 
number of infections is also significant.  

For higher values of the rate threshold, the switch is effective at reducing the 
amount of worm traffic and resulting infections, although it's important to note that 
while the problem of excessive traffic is eliminated, the switch does not completely 
halt the spread of the worm at any sensitivity level. 

For faster worms such as Sapphire/Slammer that generate packets at a very high 
rate, this problem doesn't appear. Clearly, the rate threshold needs to be chosen to 
cover the range of perceived threats. 
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Fig. 8. Code Red infections in 120 seconds 

4.2.2   Mixed “Clean” and Attack Traffic Results 
The simulation allows an arbitrary set of simulated sources, both normal and worm 
traffic, to be combined. 

With a combination of replayed traffic and simulated worms applied to it, the 
simulated switch behaved appropriately. Traffic was forwarded as in the traffic-only 
trial, while the worms were blocked in due course, also as seen before. The switch, as 
simulated, appears to perform as desired for suitable values of its parameters. 

5   Current Status and Future Work 

After introducing the ProCurve virus throttle in 2003 on the 5300xl switch, we have 
continued to refine our thoughts by: 

• Designing and patenting a version of the virus throttle with auto-adjusting 
sensitivities and thresholds.   

• Designing and patenting a version of the virus throttle that takes into account 
layer 4 (e.g. TCP or UDP) port information as part of its analysis 

• Extending our next generation ProVision™ switch ASIC with a pure hardware 
(in ASIC) version of virus throttle that no longer needs to rely on software 
calculating hashes, maintaining a connection table, etc.  

• Developing a version of virus throttle algorithm for our network manager 
software, ProCurve Manager (PCM), that uses sFlow samples as traffic 
information input.  

Beyond these virus throttle enhancements, to see where ProCurve is headed, one 
can look at where we are now with other security technologies  – and how we got 
here.  Our adaptive networks vision, which is a clear roadmap for the future, arises 
naturally from our Adaptive EDGE Architecture and our basic value proposition, 
which has remained constant for many years. 

ProCurve has long been dedicated to providing the future-proofed networks that 
customers need so they can easily adapt to change.  This commitment is clearly seen 
in the ProCurve 5400zl chassis family and ProCurve 3500yl stackable family [13].  
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These products are Layer 3/4 LAN switches with wirespeed performance and 
integrated Gigabit PoE. 

Both families are based on the ProVision™ ASIC, the fourth generation of custom-
designed ASICs from ProCurve, which deliver intelligence and control to the edge of 
a network.  With their capabilities and range, both switch series further sharpen 
ProCurve's Adaptive EDGE Architecture by delivering advanced functionality to the 
network edge to meet the evolving needs of security, mobility and convergence 
applications. 

Joining the 5400/3500 intelligent switches are other important ProCurve products.  
For instance, the Wireless Edge Services Module (WESM) [14] integrates WLAN 
management and IDM role-based policy enforcement into ProCurve intelligent edge 
switches.  The ProCurve Access Point 530 [15], the most recent ProCurve wireless 
access point, is a dual-radio 802.11b/g and 802.11 a/b/g access point offering flexible 
radio and antenna configuration, security, user authentication and access control 
services. 

In addition to providing intelligence to the network edge, ProCurve builds extra 
capabilities into our intelligent edge switches that allow us to deliver new 
functionality by moving applications from appliances through blades and into the 
silicon on every port.   

While predictions are necessarily uncertain, it’s likely that the future of networks 
will be one of evolution rather than revolution:  There will be further integration of 
security offense and defense, with ever easier-to-deploy solutions that will allow 
security protection to always be enabled.  More network capabilities – such as 
personalization – will be automated, which will boost user productivity while greatly 
reducing the complexity of network management. 
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Abstract. During last decade the number of successful intruder attacks has 
increased in many times. The damage caused by these attacks is estimated in 
hundreds millions of dollars. Insiders have a significant advantage over others 
who might want to harm an organization. Insiders can bypass physical and 
technical security measures designed to prevent unauthorized access. 
Mechanisms such as firewalls, intrusion detection systems, and electronic 
building access systems are implemented primarily to defend against external 
cyber threats. In spite of the complexity the problem, insiders can be stopped by 
means of a layered defense strategy consisting of policies, procedures, and 
technical controls. The paper describes a threat model of insider attacks and 
modern technologies that allow to protect computer systems against insiders. 
The paper covers advantages and disadvantages of different approaches that are 
used nowadays for detection and prevention of insider attacks.  

Keywords: insider attacks, information security, intrusion detection systems. 

1   Introduction 

During last decade the number of successful intruder attacks has increased in many 
times. The damage caused by these attacks is estimated in hundreds millions of 
dollars. According to the latest results of research conducted by leading institutes and 
laboratories in the field of information security more than 80% of computer attacks 
are coming from inside of the company. The 2006 was the year with the largest 
volume of information leaks in history. The total number of people who suffered from 
these five leaks was a little under 50 million. For example, on May 3, 2006 criminals 
stole a hard drive from the house of an employee of the US Department of Veteran 
Affairs. As a result, personal details of 26.5 million veterans and 2.2 million active-
duty servicemen fell into the hands of fraudsters. 

Insiders are likely to have specific goals and objectives, and have legitimate access 
to the system. Security technologies have traditionally focused on perimeter defenses. 
Most of existing security systems like firewalls, IDS, IPS, antivirus systems, etc. are 
designed for detection of external threats and almost incapable of protection against 
insider attacks. These factors led to the necessity of development of new technologies 
and approaches for internal threat management that will be described in this paper. 
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The rest of the paper is structured as follows. Section 2 describes the model of 
insider, including the possible sources of attacks and its possible consequences. 
Section 3 presents technologies and systems that can be used for detection and 
prevention of insider attacks. Section 4 summarizes the main results of the paper. 

2   Common Model of Insider Attack 

The most widespread internal threats are unauthorized access to the computer system 
(server, PC, or database), searching or viewing confidential data without 
authorization, and attempts to circumvent or crack the security or audit system. Yet 
another threat is authorized manipulation of information — changing or deleting data, 
or saving or processing confidential information in a system not designed for it. 
According to this classification there are three main types of insider threats: 

− fraud – obtaining property or services from the organization unjustly through 
deception or trickery; 

− theft of information – stealing confidential information from the company; 
− IT sabotage – acting with intention to harm a specific individual, the organization, 

or the organization’s data, systems, and/or daily business operations.. 

The insider threat model includes the following possible information leakage 
channels (Fig. 1): 

− unauthorized copying of confidential data to external devices, such as USB-disks, 
Firewire-devices, BlueTooth adapters, DVD disks, etc. For example intruder can 
copy secret information to 100 GB USB stick and then sell it to competitor; 

− unauthorized printing out of confidential documents on local and network printers 
and getting them out of the company; 

− unauthorized transmission of confidential data to external Internet servers. For 
example the attacker can upload a document with confidential data to a Web-server 
by means of HTTP or FTP protocol and than download it at home.  Insider can 
even encrypt the document before transmitting it over the network; 

− theft of devices that store confidential data, i.e. the insider can steal the hard disk 
from the server, which process the financial data. 

Fig. 1. The possible confidential information leakage channels 
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The typical source of insider attack is a disgruntled employee, which tries to cause 
financial damage to the company. These sorts of attacks can cause enormous damage, 
and not just financially. A confidential information leak is a serious blow to a 
company’s reputation. 

For best  understanding of common model of insider attack we can assume that an 
attacker is goal-oriented. Also, he is aware of the location of his potential targets and 
how to reach them. Commonly, on the base of the resources available, the degree of 
access to the information, and the motive, recognizes five insider threat scenarios. 

− Threat scenario 1. Insiders who make “innocent” mistakes and cause accidental 
disclosures. Probably the most common source of breached privacy. For example 
overhead hall conversations, misclassified data, an email, etc. 

− Threat scenario 2. Insiders who abuse their record access privileges. Individuals 
that have access to data and violate the trust associated with that access. 

− Threat scenario 3. Insiders who knowingly access information for spite or for 
profit. When an attacker has authorization to some part of the system, but not to the 
desired data and gains access to that data by other means. 

− Threat scenario 4. The unauthorized physical intruder. The attacker has physical 
entry to points of data access but has no authorization to access the desired data. 

− Threat scenario 5. Vengeful employees and outsiders, such as vindictive patients or 
intruders, who mount attacks to access unauthorized information, damage systems, 
and disrupt operations. (In the literature this threat also includes denial of-service 
attacks, even though the focus is on privacy issues). 

Internal threats that are coming from the staff cannot be completely eliminated, but 
they can be managed and kept to a minimum. When creating an integrated security 
system, all the potential means of carrying out internal attacks must be taken into 
account. The protection strategy must be based on two principles: disabling features 
that are not necessary for users and constantly monitoring any activity of employees, 
related to confidential information access. Maintaining a balance between these 
principles is a constant compromise, but it is the only way to create a transparent and 
flexible security system that provides an effective protection against internal attacks 
of insiders. The description of different technologies that are used for the detection 
and prevention of internal threat is cited in Section 3. 

3   Technologies for Protection Against Insider Attacks 

At present only complex approach can guarantee an effective protection against 
internal threats. Insider attacks can be prevented only through a layered defense 
strategy consisting of policies, procedures, and technical controls. Complex approach 
begins with the establishment of appropriate and effective security policies. Effective 
policies help ensure that threats to critical assets are understood, managers and users 
are adequately trained, and actions to be taken when an insider attack is identified are 
defined. Whenever possible, the policy should reflect the mission of the organization 
that promulgates it. Therefore, it should codify the rules governing enterprise 
operations as they are reflected in its information infrastructure and should explicitly 
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exclude activities or operations not needed to support the enterprise’s mission.  
A mission-oriented security policy can aid in selection and introduction of 
organizational and technical security controls. 

3.1   Organizational Security Controls 

Organizational security controls usually include the following: 

− implementation of risk assessment procedures, that allow define the critical assets 
of the company, create a threat model and develop a strategy that will minimize the 
security risks, related to insider attacks; 

− development of information security policy, which allows to formalize the process 
of detection and prevention of insider attacks; 

− organization of security awareness training for all employees. The first line of 
defense from insider threats is the employees themselves. All employees in an 
organization must understand that security policies and procedures exist, that there 
is a good reason why they exist, that they must be enforced, and that there can be 
serious consequences for infractions. Each employee needs to be aware of the 
organization’s security policies and the process for reporting policy violations; 

− separation of duties and least privilege. If all employees are adequately trained in 
security awareness, and responsibility for critical functions is divided among 
employees, the possibility that one individual could commit fraud or sabotage 
without the cooperation of another individual within the organization is limited. 
Effective separation of duties requires the implementation of least privilege, that is, 
authorizing people only for the resources they need to do their jobs. 

Organizational security means should be complemented by technical security 
controls, that are described in Section 3.2. 

3.2   Technical Security Controls 

Over the years, organizations have deployed different types of products (e.g., identity 
management, firewalls, antivirus software) that could provide them with partial 
protection against insider threats. But as the existing products cannot provide high 
level of security, new technologies and solutions became necessary to achieve 
regulatory compliance and improved protection against information leakage. That 
realization has led to the emergence of new dedicated solutions that can be 
categorized into the following groups: network-based and desktop-based solutions. 

Network-based solutions are used to monitor outbound network traffic and identify 
the unauthorized delivery of sensitive information via email, Web, IM, P2P, and other 
channels, according to corporate policies. Most of the network-based security systems 
are using an architecture in which network sniffers (in most cases Linux-based 
hardware appliances) are installed next to firewalls to monitor outbound network 
traffic. The sniffers then reassemble TCP sessions and analyze them to detect 
sensitive information leakage, as defined by policies and rules. Other products are 
using proxies for inspecting specific channels (in most cases SMTP email) and block 
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communication when unauthorized contents are detected. In some cases, sniffers and 
proxies are used in combination. 

Desktop-based solutions are designed to enforce data distribution policies on each 
corporate workstation (both PCs and laptops, in some cases). Based on agents 
installed into the operating system on each desktop, those solutions allow 
organizations to gain control over user activities, covering either network-related 
activities such as attaching a file to an email or IM message; or desktop activities such 
as printing, copying a file to a USB device, burning to a CD, and so on. Many 
desktop-based solutions cover both sides. 

4   Overview of Existing Security Solutions for Protection Against 
Insiders

At present there are a lot of vendors on security market which offer security solutions, 
that allow to protect against insider attacks. This section of the paper presents 
information about advantages and disadvantages of different security solutions, based 
on the practical experience of JSC “DialogueScience” in installation and support of 
these products. 

4.1   Microsoft Rights Management Service 

Microsoft Corporation released Rights Management Service (RMS) in November 
2003. The product became the third Microsoft solution implementing features 
necessary for digital rights management. Earlier the company released Windows 
Media Rights Management (for audio and video data), and Digital Asset Server  
(for e-books).  

While forming a set of privileges and rules for a document, the user can restrict the 
following document uses: viewing, printing, saving, export (Save as), manipulations 
with clipboard (copy/paste), editing (modification), and use of macros. If a document 
is an e-mail message, it is possible additionally to restrict its forwarding and the 
opportunity to respond to it (reply and reply all). All these restrictions can be 
associated with individual users and for user groups. Every set of privileges and rules 
can be assigned absolute and relative expiry periods (e.g., a specific expiry date or a 
number of days after a specified time). 

The common algorithm of RMS operation is described below (Fig. 2): 

− The author creates a document and forms a set of privileges and rights to 
manipulate it (Publishing License). The application encrypts the document using a 
symmetric key. 

− The application sends a Publishing License to an RMS server, which should sign it. 
− RMS signs the Publishing License and returns it to the application. 
− The author sends the file to the document recipients. 
− The recipient opens the file. Opening the application sends a Use License request 

to the RMS server. The request includes the RM Account Certificate (RAC) of the 
recipient and the Publishing License of the document. 
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− RMS validates the request and RAC, and identifies the recipient. In the case of a 
successful validation, RMS grants the recipient a license to work with the 
document. 

− The application receives the license from RMS and follows the rules it contains. 
The recipient then works with the document. 

Fig. 2. The logical strucure of RMS 

Microsoft RMS usage is based on the following concept. The user, the author of the 
document, personally defines the set of privileges and rules that restricts the use of a 
protected document by other users. 

4.2   InfoWatch Enterprise Solution 

The InfoWatch company was founded in 2003 as a subsidiary of Kaspersky Lab. In 
2004 InfoWatch released InfoWatch Enterprise Solution (herein after referred as IES), 
an integrated solution preventing data leaks. The product is designed for use in large 
corporate LANs. The tasks of IES include, first of all, real-time blocking of leaks and 
notification of security officers about such incidents. The deployment of the IES 
integrated solution helps not only to prevent the theft of confidential information but 
also provides compatibility with the standards of IT security and compliance with 
existing laws. 

IES is based on a distributed architecture consisting of the following software 
components: 

− Web Monitor, which filters web traffic automatically blocking the leaks of 
confidential data via web channels (web mail, chats, forums, etc.). 

− Mail Monitor, which filters e-mail traffic automatically blocking leaks of 
confidential data, including in attachments. 

− Net Monitor, which monitors on workstation level user manipulations with 
confidential documents in Microsoft Office and Adobe Acrobat environments, 
controls the printing of documents, work with clipboard and also tracks file 
operations (file creation, deletion, modification, reading and renaming). 

− Mail Storage receives in real time copies of e-mail messages, preserves them in 
storage and supports analytical selection in that storage. Thus, the component 
allows centralized storage of corporate correspondence and its retrospective 
analysis if necessary. 
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− Device Monitor allows real-time control over user access to communication ports 
on a workstation (CD-ROM, floppy, HDD, hard drives, removable dries, COM, 
LPT, USB, IrDA ports, Bluetooth, FireWire, Wi-Fi). 

From the very beginning IES development took into account a wide range of 
supported formats. The current version of the product supports the following file 
formats: Microsoft Office (Word, Excel, PowerPoint), Adobe PDF, TXT, HTML, 
RTF, ZIP, ARJ and RAR. It also filters the following types of traffic: HTTP and 
SMTP. Support for image file formats (JPEG, GIF, BMP, etc.) and filtering of the 
traffic generated by instant messaging utilities (ICQ, MSN, AOL, Yahoo, etc.) is 
planned in upcoming versions. 

4.3   The Security Policy Management System “Enterprise Guard” 

The system “Enterprise Guard” is designed for active monitoring of users activities of 
computer system on the basis of collection and analysis of data on events registered 
on workstations of users. 

The system «Enterprise Guard» has a distributed architecture comprising the 
following components (Fig. 3): 

− Agents which are installed at the users’ workstations that collect the necessary 
information. Thereat the agents use minimal hardware resources and do not affect 
users’ workstations performance; 

− Server which performs the function of collection, storage and analysis of 
information coming from the agents; 

− Administrator console which is designed for the centralized management of server 
and agents. The administrator console also includes a report generator tool. 

Fig. 3. Structure of the system ”Enterprise Guard” 
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The system “Enterprise Guard” makes possible collection of the following 
information from the  users’ workstations: 

− beginning/end of the users working session; 
− application execution/termination; 
− file access operations of the launched applications; 
− applications control total alteration; 
− dialog boxes opening within the applications; 
− keyboard input of CS users; 
− application Access to the Internet sources; 
− documents printing out of the applications; 
− sending/receiving of e-mails. 

Based on the analysis of information collected by the agents, “Enterprise Guard” 
detects the violation of security policy defined by the administrator. After the 
detection of such violations “Enterprise Guard” can use the following response 
methods: 

− Sending an e-mail message about the detected violation Security Administrator  
− Displaying the information about the detected violation on the administrator 

console; 
− Blocking of the workstation of the intruder; 
− Generating a screenshot from the intruder workstation; 
− Blocking of application that was executed by the intruder; 
− Displaying the warning message box on the screen of the potential intruder. 

“Enterprise Guard” is equipped with self-security mechanisms providing the system 
integrity and cryptographic security of proprietary information distributed between 
the components on the network. Additionally the system controls the availability of its 
agents by means of sending special echo-request to each agent of “Enterprise Guard”. 

4.4   Security Control System “DeviceLock” 

DeviceLock access management software is a solution to enforcing device related 
security policy. DeviceLock administrators can set permissions per peripheral port, 
device class, device model, and unique device. Simultaneously, they can grant or 
deny access per user group and user, even specifying day of the week and time. In 
addition, DeviceLock will audit all uploading and downloading activity through local 
drives and ports. DeviceLock consists of three parts (Fig. 4): 

− DeviceLock Service which is installed on each client system, runs automatically, 
and provides device protection on the client machine while remaining invisible to 
that computer’s local users. 

− DeviceLock Enterprise Server is the optional component for centralized collection 
and storage of the shadow data and audit logs in MS SQL Server. 

− The management console is the control interface that systems administrators use to 
remotely manage each system that has DeviceLock Service. DeviceLock ships 
with three different management consoles: DeviceLock Management Console  
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(the MMC snap-in), DeviceLock Enterprise Manager and DeviceLock Group 
Policy Manager (integrates into the Windows Group Policy Editor). 

Fig. 4. The structure of system “DeviceLock” 

DeviceLock allows to control which users or groups can access USB, FireWire, 
Infrared, COM and LPT ports, WiFi and Bluetooth adapters, DVD/CD-ROMs, floppy 
drives, other removable and Plug and Play devices. It is possible to set devices in 
read-only mode and control access to them depending on the time of day and day of 
the week. DeviceLock also allows you to authorize a specific model of device to 
access the USB port, while locking out all others. You can even “White List” a single, 
unique device, while locking out all other devices of the same brand and model, as 
long as the device manufacturer has supplied a suitable unique identifier, such as a 
serial number. 

The DeviceLock optional data shadowing capability significantly enhances the 
corporate IT auditor’s ability to ensure that sensitive information has not left the 
premises on removable media. It captures full copies of files that are copied to 
authorized removable devices, burned to CD/DVD or even printed by authorized end 
users. Shadow copies are stored on a centralized component of an existing server and 
any existing ODBC-compliant SQL infrastructure of the customer’s choosing. 

5   Conclusion 

Recent events have shown that organizations across industries cannot afford to 
continue to ignore the potential for insider attacks. As organizations grow, they 
employ workforces that are increasingly spread across geographies; they implement 
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systems that are more heterogeneous, more complex and more connected; they retain 
more confidential data; and they are subject to changing regulatory requirements. 
Traditional boundaries between organizations, partners, users and customers have 
become blurred, making security policies more difficult to define and enforce. 
Organizations must be prepared to fend off attacks wherever they originate — by 
addressing vulnerabilities in precisely this gap between traditional business and the 
open, distributed organizations of today and the future. 

The threat of attack from insiders is real and substantial and the impact from 
insider attacks can be devastating. According to one complex case of financial fraud 
committed by an insider in a financial institution resulted in losses of almost $700 
million. Insiders have a significant advantage over others who might want to harm an 
organization. Insiders can bypass physical and technical security measures designed 
to prevent unauthorized access. Mechanisms such as firewalls, intrusion detection 
systems, and electronic building access systems are implemented primarily to defend 
against external cyber threats. In spite of the complexity the problem, insiders can be 
stopped by means of a layered defense strategy consisting of policies, procedures, and 
technical controls. 
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Abstract. We integrate programming constructs for managing confi-
dentiality in an ML-like imperative and higher-order programming lan-
guage, dealing with both access control and information flow control. Our
language includes in particular a construct for declassifying information,
and constructs for granting, restricting or testing the read access level
of a program. We introduce a type and effect system to statically check
access rights and information flow. We show that typable programs are
secure, that is, they do not attempt at making illegal read accesses, nor
illegal information leakage. This provides us with a natural restriction on
declassification, namely that a program may only declassify information
that it has the right to read.

Keywords: Access control, declassification, language-based security, se-
cure information flow, stack inspection, type and effect systems.

1 Introduction

In a world where more and more information is digitalized, and where more and
more people have access to it, most often by means of dedicated software, pro-
tecting confidential data is a concern of growing importance. Controlling access
rights is obviously necessary, and access control techniques have indeed been de-
veloped and implemented long ago. However, as it has been argued in [7,10,18]
for instance, access control is not enough to ensure end-to-end confidentiality.
One issue is to prevent authorized users to publicly disclose confidential data,
especially when the “users” are publicly accessible softwares receiving and stor-
ing these data. Therefore, one should have means to control that such programs
do not contain security bugs, and in particular that programs do not implement
illegal flows of information. This is the aim of the language-based approach to
information-flow security.

Since the pioneering work of Denning [7], the classical way of abstractly spec-
ifying secure information flow is to use a lattice of security levels. The “objects”
– information containers – of a system are then labelled by security levels, and
information is allowed to flow from one object to another if the source object has
a lower confidentiality level than the target one. That is, the ordering relation
on security levels determines the legal flows, and a program is secure if, roughly
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speaking, it does not set up illegal flows from inputs to outputs. This was first
formally stated via a notion of strong dependency by Cohen in [6], which is
most often referred to as non-interference, according to the terminology used by
Goguen and Meseguer in [9].

A lot of work has been devoted to the design of methods for analyzing in-
formation flow in programs. Since the work of Volpano, Smith and Irvine [24],
the classical approach by now is to use a type system for this purpose, with
well-known advantages, like preventing some programming errors at an early
stage, while avoiding the run-time overhead caused by dynamic checks. Type
systems for secure information flow have been designed for various languages,
culminating with Jif (or JFlow, see [13]) and Flow Caml [22] as regards the
size of the language (see the survey [18] for further references). In this paper we
shall base our study on Core ML, a call-by-value λ-calculus extended with im-
perative constructs, where the “information containers,” to which security levels
are assigned, are memory locations – references, in ML’s jargon (in an extended
setting, that could also be files, entries in a database, library functions, or class
names as in [2]).

There is still a number of issues to investigate in order to make the techniques
developed following the language-based approach to information-flow security
useful in practice – see [26] for a review of some of the challenges. One of the
challenges is declassification. Indeed, there are many useful programs that need
to declassify information, from a confidential status to a less secret one. A typ-
ical example is a password checking procedure, which delivers to any user the
result of comparing a submitted password with secret information contained in
a database, thus leaking a bit of confidential information. Such a program is, by
definition, ruled out by the non-interference requirement, which is therefore too
strong to be used in practice. The problem of taking into account declassifying
programs in checking secure information flow has recently motivated a lot of
work, like for instance [1,4,5,12,15,19]. We refer to [21] for a thorough discussion
of this problem. In [1], the authors introduced a programming construct for man-
aging declassification, that consists in declaring flow policies with a local scope.
Then for instance, the critical parts of a password checking procedure should
be enclosed into a statement that it is, for a while, legal to make information
flow from a secret to a public level (exactly which information should flow is left
to the programmer’s responsibility). This is supported in [1] by the definition
of a new confidentiality policy, called the non-disclosure policy, that generalizes
non-interference while allowing one to deal with declassification.

There is no constraint on using the declassification construct in [1], and this
is in contrast with most other studies, which aim at restricting the use of such
an operation (sometimes without justifying such constraints, for lack of a cor-
responding extensional notion of security). In this paper, we shall show that
putting access control into the picture provides us with a natural way to restrict
declassification, namely: a program may only declassify information that it has
the right to read. To do this, we integrate into the language a formal approach to
access control that has recently been introduced to deal with the “stack inspec-
tion” mechanism of Java security architecture [8,17,23]. That is, we add to the
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language of [1]
1

the constructs for managing access control that are considered
in these papers, namely: a construct (� � M) for restricting the access right of
programM to be lower than �, a dual construct (enable � in M) for granting read
access level at least � to M , and (test � then M else N) for testing whether the
access level � is granted by the context or not, and behave accordingly. In these
constructs, � is a security level, that is a member of the lattice that is used for
directing information flow. In particular, the security level at which a reference
is classified also represents the right to access the information it contains, that
is, to read the reference. For instance, in order to transfer information classified
at level �1 (or lower) into level �2 (where �1 �� �2 in the security lattice), one may
write, using notations that are explained in the next section:

(test �1 then (flow �1 ≺ �2 in x�2 := ! y�1) else ())

Our main contribution is as follows. We extend the type system of [1] to deal
with the access control constructs, thus integrating both access control and infor-
mation flow control into a single static analysis technique. A similar integration
was previously done in [2], but for a different language, which in particular does
not involve declassification. The combination of access control and information
flow is also discussed in [16] (with some further references), in a purely func-
tional setting, following an approach which does not seem compatible with a
bisimulation-based notion of a secure program, like the non-disclosure policy.
Our main results are, first, a type safety property showing that access control is
indeed ensured by the type system, that is, a typable program never attempts to
read a reference for which it would not be granted the appropriate reading clear-
ance. (A similar type safety result was established in [17,23], but for a purely
functional language, with no imperative feature, thus not dealing with access
control in our sense, and without any consideration for information flow, and,
a fortiori, declassification). Second, we extend the soundness result of [1], show-
ing that secure information flow is ensured by our type system. In this way, we
achieve the enforcement of “end-to-end confidentiality” in our language, while
restricting declassification in a natural way.

Note. For lack of space, the proofs are omitted, or only briefly sketched.

2 The language

2.1 Security (pre-)Lattices

The security levels are hierarchically organized in a pre-lattice, a structure de-
fined as a pair (L,�), where � is a preorder relation over the set L, that is a
reflexive and transitive, but not necessarily symmetric relation, such that for
any x, y ∈ L there exist a meet x� y and a join x� y satisfying:

x � y � x x � x � y

x � y � y y � x � y

z � x & z � y ⇒ z � x � y x � z & y � z ⇒ x � y � z

1
We do not consider threads in this paper. They would not cause any technical diffi-
culty, but complicate the definitions and proofs.
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The pre-lattices we use are defined as follows. We assume given a set P of
principals, ranged over by p, q . . . (From an access control perspective, these are
also called permissions [2,8], or privileges [17,23], while a “principal” is a set of
permissions.) A confidentiality level is any set of principals, that is any subset �
of P . The intuition is that whenever � is the confidentiality label of an object, i.e.
a reference, it represents a set of programs that are allowed to get the value of
the object, i.e. to read the reference. Then a confidentiality level is similar to an
access-control list (i.e. a set of permissions). From this point of view, a reference
labelled P (also denoted ⊥) is the most public one – every program is allowed
to read it – whereas the label ∅ (also denoted 	) indicates a secret reference,
and reverse inclusion of security levels may be interpreted as indicating allowed
flows of information: if a reference u is labelled �, and � ⊇ �′ then the value of
u may be transferred to a reference v labelled �′, since the programs allowed to
read this value from v were already allowed to read it from u.

We follow the approach of [1], where declassification is achieved by dynam-
ically updating the lattice structure of confidentiality levels, by the means of
local flow policies. A flow policy is a binary relation over P . We let F , G . . .
range over such relations. A pair (p, q) ∈ F is to be understood as “information
may flow from principal p to principal q”, that is, more precisely, “everything
that principal p is allowed to read may also be read by principal q”. As a member
of a flow policy, a pair (p, q) will be written p ≺ q. We denote, as usual, by F ∗
the preorder generated by F (that is, the reflexive and transitive closure of F ).
Any flow policy F determines a preorder on confidentiality levels that extends
reverse inclusion, as follows:

� �F �′ ⇔def ∀q ∈ �′. ∃p ∈ �. p F ∗ q

It is not difficult to see that the preorder �F induces a pre-lattice structure on
the set of confidentiality levels, where a meet is simply the union, and a join of
� and �′ is

{ q | ∃p ∈ �. ∃p′ ∈ �′. p F ∗ q & p′ F ∗ q }
This observation justifies the following definition.
Definition (Security Pre-Lattices) 2.1. A confidentiality level is any sub-
set � of the set P of principals. Given a flow policy F ⊆ P×P , the confidentiality
levels are pre-ordered by the relation

� �F �′ ⇔def ∀q ∈ �′. ∃p ∈ �. pF ∗ q
The meet and join, w.r.t. F , of two security levels � and �′ are respectively given
by � ∪ �′ and

��F �′ = { q | ∃p ∈ �. ∃p′ ∈ �′. pF ∗ q & p′ F ∗ q }.

2.2 Syntax and Operational Semantics

The language we consider is a higher-order imperative language à la ML, ex-
tended with constructs for dynamically granting and testing access rights, as
in [2,8,17,23], and a construct for introducing local flow policies, as in [1]. The
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M, N . . . ∈ Expr ::= V | (if M then N else N ′) | (MN) expressions

| M ; N | (ref�,θ N) | (!N) | (M := N)

| (� � M) | (enable � in M) | (test � then M else N)

| (flow F in M)

V ∈ Val ::= x | u�,θ | recf(x).M | tt | ff | () values

Fig. 1. Syntax

construct (��M) is used to restrict the access right of M by � (this is similar to
the “framed” expressions of [8], and to the “signed” expressions of [17]). This is
a scoping construct: the current reading clearance is restored after termination
of M . Our (enable � in M) construct is slightly different from the one of [17,23],
where � is restricted to be a singleton (our semantics is accordingly slightly
more liberal). It is used to locally extend the read access right of M by �. The
test expression checks whether a given level is enabled by the current evaluation
context. The local flow declaration (flow F in M) enables the policy F to be used
while reducing M , usually for declassification purposes. (For more comments on
the syntax, we refer to [1,2,8,17].)

The syntax is given in Figure 1, where x and f are any variables, � is any
confidentiality level, and F is any flow policy. A reference is a memory location u
to which a confidentiality level � is assigned. For technical reasons, we also record
the type θ (see Section 3 below) of the contents of the reference. We denote by
loc(M) the set of decorated locations u�,θ occurring in M . These references are
regarded as providing the inputs of the expression M . We let fv(M) be the set of
variables occurring free in M , and we denote by {x �→V }M the capture-avoiding
susbtitution of V for the free occurrences of x in M , where V ∈Val . We may write
recf(x).M as λxM whenever f �∈ fv(M). As usual, (let x = N in M) denotes
(λxMN).

The reduction relation is a transition relation between configurations of the
form (M,µ) where µ, the memory (or heap), is a mapping from a finite set
dom(µ) of references to values. The operation of updating the value of a reference
in the memory is denoted, as usual, µ[u�,θ := V ]. We say that the name u is
fresh for µ if v�,θ ∈ dom(µ) ⇒ v �= u. In what follows we shall only consider
well-formed configurations, that is pairs (M,µ) such that loc(M) ⊆ dom(µ)
and for any u�,θ ∈ dom(µ) we have loc(µ(u�,θ)) ⊆ dom(µ) (this property will
be preserved by the operational semantics). As usual (see [25]), the operational
semantics consists in reducing a redex (reducible expression) inside an evaluation
context. Reducible expressions are given by the following grammar:

R := (if tt then M else N) | (if ff then M else N) | (recf(x).MV )

| V ; N | (ref�,θ V ) | (!u�,θ) | (u�,θ := V )

| (� � V ) | (enable � in V ) | (test � then M else N)

| (flow � in V )
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� �G (E[(if tt then M else N)], µ) → (E[M ], µ)

� �G (E[(if ff then M else N)], µ) → (E[N ], µ)

� �G (E[(recf(x).MV )], µ) → (E[{x �→V }{f �→recf(x).M}M ], µ)

� �G (E[V ; N ], µ) → (E[N ], µ)

� �G (E[(ref�′,θ V )], µ) → (E[u�′,θ], µ ∪ {u�′,θ �→V }) u fresh for µ

� �G (E[(!u�′,θ)], µ) → (E[V ], µ) µ(u�′,θ) = V &
�′ �G �E��

� �G (E[(u�′,θ := V )], µ) → (E[()], µ[u�′,θ := V ])

� �G (E[(�′ � V )], µ) → (E[V ], µ)

� �G (E[(enable �′ in V )], µ) → (E[V ], µ)

� �G (E[(test �′ then M else N)], µ) → (E[M ], µ) �′ �G �E��

� �G (E[(test �′ then M else N)], µ) → (E[N ], µ) �′ ��G �E��

(E[(flow F in V )], µ) → (E[V ], µ)

Fig. 2. Reduction

Evaluation contexts are given by:

E ::= [] | E[F] evaluation contexts

F := (if [] then M else N) | ([]N) | (V []) frames

| [] ; N | (ref�,θ[]) | (! []) | ([] := N) | (V := [])

| (� � []) | (enable � in []) | (flow F in [])

The operational semantics of an expression depends upon a given global flow
policy G and a default confidentiality level �, which represents the access right as-
signed to the evaluated expression – as if we had to evaluate (⊥�(enable � in M)).
Then the statements defining the operational semantics have the form

� �G (M, µ) → (M ′, µ′)

Given a global flow policy G, for any confidentiality level � representing the
current access level, we define the level granted by the evaluation context E,
denoted �E��, as follows:

�[]�� = �

�E[F]�� =

�
��
��

(�E��) �G �′ if F = (�′ � [])

(�E��) �G �′ if F = (enable �′ in [])

�E�� otherwise

Computing �E�� is a form of “stack inspection,” see [8,17,23]. The reduction
rules are given in Figure 2. They are fairly standard, as regards the functional
and imperative fragment of the language. One may observe that (flow F in M)
behaves exactly as M , and that the semantics of the constructs for manag-
ing access rights are as one might expect, given the definition of �E�� above. We
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denote by ∗→ the reflexive and transitive closure of the reduction relation. More
precisely, we define:

� �G (M, µ) ∗→ (M, µ)

� �G (M, µ) ∗→ (M ′′, µ′′) � �G (M ′′, µ′′) → (M ′, µ′)

� �G (M, µ) ∗→ (M ′, µ′)

An expression is said to converge if, regardless of the memory, its evaluation
terminates on a value, that is:

M⇓ ⇔def ∀µ ∃V ∈ Val ∃µ′. (M, µ) ∗→ (V, µ′)

One can see that a constraint that could block the reduction is the dynamic
checking of read access rights, that is the condition �′ �G �E�� when reading a
reference u�′,θ in the memory, with � as the given reading clearance. (Since we are
only considering well-formed configurations, the value µ(u�′,θ) is always defined.)
Indeed for instance the expression (omitting the types attached to references)

(flow H ≺ L in vL := !uH)

is blocked if the current access right is {L}, and can only proceed if this right is
at least {H}. This indicates that, using (flow F in M), one can only declassify
information that one has the right to read. This is because the local flow policy
declarations do not interfere with access control, i.e. they do not play any role
in the definition of �E��. More generally, to let information flow, such as in
v�′ := !u�, a program must have the right to read it.

One can easily check the usual property (see [25]) that, given a pair (�,G),
a closed expression is either a value, or a reducible expression, or is a faulty
expression, either for typing reasons, or because it does not have the appropriate
access rights, that is:
Lemma and Definition 2.2. Let M be a closed expression. Then, for any
� and G, either M ∈ Val , or for any µ there exist F , M ′ and µ′ such that
� �G (M,µ) −→

F
(M ′, µ′), or M is (�,G)-faulty, that is:

(i) M = E[(if V then N else N ′)] and V �∈ {tt ,ff }, or
(ii) M = E[(V V ′)] and V is not a functional value recf(x).M ′, or
(iii) M = E[(!V )] or M = E[(V := V ′)] where V is not a reference u�′,θ, or
(iv) M = E[(!u�′,θ)] with �′ ��G �E��.
Our main aim in this paper is to show that we can design a type system that
guarantees both secure information flow, as in [1], and, as in [2,17], the fact that
a well-typed expression is never stuck, and therefore that the run-time checking
of the access rights is useless for such expressions.

3 The Type and Effect System

Our type system elaborates on the one of [1], and, as such, is actually a type
and effect system [11]. This is consistent with our “state-oriented” approach –
as opposed to the “value-oriented” approach of [8,16,17,23] for instance – where
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only the access to the “information containers”, that is, to the references in the
memory, is protected by access rights. In particular, a value is by itself neither
“secret” nor “public,” and the types do not need to be multiplied by the set of
confidentiality levels. Then the types are

τ, σ, θ . . . ::= t | bool | unit | θ ref� | (τ s−−→
�,F

σ)

where t is any type variable and s is any “security effect” – see below. Notice
that a reference type θ ref� records the type θ of values the reference contains,
as well as the “region” � where it is created, which is the confidentiality level
at which the reference is classified. Since a functional value wraps a possibly
effectful computation, its type records this latent effect [11], which is the effect
the function may have when applied to an argument. It also records the “latent
reading clearance” � and the “latent flow policy” F , which are assumed to hold
when the function is called. The judgements of the type and effect system have
the form

�; F ; Γ �G M : s, τ

where Γ is a typing context, assigning types to variables, and s is a security
effect, that is a triple (�0, �1, �2) of confidentiality levels. The intuition is:

– � is the current read access right that is in force when reducing M ;
– F is the current flow policy, while G is the given global flow policy;
– �0, also denoted by s.c, is the confidentiality level of M . This is an upper

bound (up to the current flow relation) of the confidentiality levels of the
references the expression M reads that may influence its resulting value;

– �1, also denoted s.w, is the writing effect, that is a lower bound (w.r.t. the
relation �) of the level of references that the expression M may update;

– �2, also denoted s.t, is an upper bound (w.r.t. the current flow relation) of
the levels of the references the expression M reads that may influence its
termination. We call this the termination effect of the expression.

In the following we shall denote s.c�F ∪G s.t by s.r, assuming that F and G are
understood from the context. There is actually an implicit parameter in the type
system, which is a set T of expressions that is used in the typing of conditional
branching. The single property that we will assume about this set in our proof
of type soundness is that it only contains strongly converging expressions, that
is:

M ∈ T ⇒ M⇓
According to the intuition above, the security effects s = (c, w, t) are ordered
componentwise, in a covariant manner as regards the confidentiality level c and
the termination effect t, and in a contravariant way as regard the writing effect
w. Then we abusively denote by ⊥ and 	 the triples (⊥,	,⊥) and (	,⊥,	)
respectively. In the typing rules for compound expressions, we will use the join
operation on security effects:

s �F s′ =def (s.c �F s′.c, s.w ∪ s′.w, s.t �F s′.t)

as well as the following convention:
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�;F ;Γ �G u�′,θ : ⊥, θ ref�′
(Loc)

�;F ;Γ, x : τ �G x : ⊥, τ
(Var)

�;F ;Γ, x : τ, f : (τ s−−→
�,F

σ) �G M : s, σ

�′;F ′; Γ �G recf(x).M : ⊥, (τ s−−→
�,F

σ)
(Fun)

�;F ;Γ �G () : ⊥, unit
(Nil)

�;F ;Γ �G tt : ⊥, bool
(BoolT)

�;F ;Γ �G ff : ⊥, bool
(BoolF)

�;F ;Γ �G M : s, bool �;F ; Γ �G Ni : si, τ s.r �F ∪ G s0.w ∪ s1.w

�;F ;Γ �G (if M then N0 else N1) : s � s0 � s1 � (⊥, �, t), τ
(Cond)

where

t =

��
�

⊥ if N0, N1 ∈ T

s.c otherwise

�;F ;Γ �G M : s, τ
s′

−−−→
�′,F ′ σ �′ �G � s.t �F ∪ G s′′.w

�;F ;Γ �G N : s′′, τ s.r � s′′.r �F ∪ G s′.w

�;F ∪ F ′;Γ �G (MN) : s � s′ � s′′ � (⊥, �, s.c � s′′.c), σ
(App)

�;F ;Γ �G M : s, τ �; F ;Γ �G N : s′, σ s.t �F ∪ G s′.w

�;F ;Γ �G M ; N : (⊥, s.w, s.t) � s′, σ
(Seq)

�;F ;Γ �G M : s, θ s.r �F ∪ G �′

�;F ;Γ �G (ref�′,θ M) : (⊥, s.w, s.t), θ ref�′
(Ref)

�; F ;Γ �G M : s, θ ref�′ �′ �G �

�;F ;Γ �G (!M) : s � (�′, �, ⊥), θ
(Deref)

�;F ;Γ �G M : s, θ ref�′ s.t �F ∪ G s′.w

�;F ;Γ �G N : s′, θ s.r � s′.r �F ∪ G �′

�;F ;Γ �G (M := N) : (⊥, s.w ∪ s′.w ∪ �′, s.t � s′.t), unit
(Assign)

� �G �′;F ;Γ �G M : s, τ

�; F ;Γ �G (�′
� M) : s, τ

(Restric)
� �G �′;F ;Γ �G M : s, τ

�;F ;Γ �G (enable �′ in M) : s, τ
(Enable)

�′;F ;Γ �G M : s, τ �;F ;Γ �G N : s′, τ

�;F ;Γ �G (test �′ then M else N) : s � s′, τ
(Test)

�;F ∪ F ′;Γ �G M : s, τ s.c �F ∪ F ′ ∪ G c s.t �F ∪ F ′ ∪ G t

�;F ;Γ �G (flow F ′ in M) : (c, s.w, t), τ
(Flow)

Fig. 3. The Type and Effect System

Convention. In the type system, when the security effects occurring in the
context of a judgement �;F ;Γ �G M : s, τ involve the join operation �, it is
assumed that the join is taken w.r.t. F ∪ G, i.e. it is �F ∪G. We recall that by
s.r we mean s.c �F ∪ G s.t.
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The typing system is given in Figure 3. Notice that this system is syntax-directed:
there is exactly one rule per construction of the language. In particular, there is
no subtyping rule. As an example, one can see for instance that the expression

(test {p} then (flow p ≺ q in v{q} := !u{p}) else ())

(similar to the one given in the Introduction) is typable. One should also notice
that our typing rules allow the programmer to make a dynamic use of the test
construct, as in

let x = λy(test � then v� := !u� else ()) in

(if M then (enable � in x()) else x())

Compared to the system of [1], which does not involve constructs for managing
access control, the main difference is in the (Deref) rule, where we have the
constraint that the level of the reference that is read should be less than the
access level granted by the context. Notice that this constraint only involves
the global flow policy G, not the local one F . This is the way to ensure that
declassification does not modify the access rights. There is a similar constraint
in the rule for typing application, where the access level required by the (body
of the) function should indeed be granted by the context. It is easy to see that
typing enjoys a “weakening” property, asserting that if an expression is typable
in the context of some access right �, then it is also typable in the context of a
more permissive reading clearance:
Lemma 3.1. If �;F ;Γ �G M : s, τ and � �G �′ then �′;F ;Γ �G M : s, τ .

Proof: by induction on the inference of the typing judgemnent.

Similarly, one could show that relaxing (that is, extending) the global or local
flow policy does not affect typability.

4 Type Safety

The proof of type safety follows the usual steps [25]: we prove the Subject Re-
duction property, showing that typing is preserved along reductions, while the
effects are decreasing; then we prove that faulty expressions are not typable.
This, together with Lemma 2.2, will entail type safety. In the proof of the Sub-
ject Reduction property we use the following observation:
Remark 4.1. For any value V ∈Val , if V is typable with type τ in the context
Γ , then for any �, F and G we have �;F ;Γ �G V : ⊥, τ .
We shall also need the following lemma, where we use the flow policy �E� granted
by the evaluation context E, which is defined as follows:

�[]� = ∅

�E[F]� =

�
�E� ∪ F if F = (flow F in [])

�E� otherwise

Lemma 4.2. If �;F ;Γ �G E[M ] : s, τ , then there exist s0 and σ such that
�E��;F ∪ �E�;Γ �G M : s0, σ, and if �E��;F ∪ �E�;Γ �G N : s1, σ with
s1 �G s0 then �;F ;Γ �G E[N ] : s′, τ for some s′ such that s′ �G s.
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Proof: by induction on E.

Proposition (Subject Reduction) 4.3. If �;F ;Γ �G M : s, τ and � �G

(M,µ) → (M ′, µ′) with u�,θ ∈ dom(µ) ⇒ �;F ;Γ �G µ(u�,θ) : ⊥, θ then
�;F ;Γ �G M ′ : s′, τ for some s′ such that s′ �G s.

Proof Sketch: we have M = E[R] and M ′ = E[N ] with (R,µ) → (N,µ′),
where R is a redex. We proceed by induction on the context E. In the case
where E = [], the proof is as usual for the functional and imperative part of the
language (we need some auxiliary properties, see [25]). Let us just examine the
cases where a security construct is involved. In the cases of

� �G ((�′ � V ), µ) → (V, µ)

� �G ((enable �′ in V ), µ) → (V, µ)

� �G ((flow F in V ), µ) → (V, µ)

we use the Remark 4.1 above. The cases

� �G ((test �′ then M ′ else M ′′), µ) → (M ′, µ) with �′ �G �

� �G ((test �′ then M ′′ else M ′), µ) → (M ′, µ) with �′ ��G �

are immediate (in the first case we use Lemma 3.1). Now if E = E′[F] we use
the Lemma 4.2 above.

Now we show that the faulty expressions, as defined in Lemma and Definition
2.2, are not typable.
Lemma 4.4. The (�,G)-faulty expressions are not typable in the context of
access right � and global flow policy G.

Proof: let M = E[(!u�′,θ)] with �′ ��G �E��, and assume that �;F, Γ �G M :
s, τ . Then by Lemma 4.2 one would have �E��;F ∪ �E�;Γ �G (!u�′,θ) : s′, σ for
some s′ and σ, but this is only possible, by the (Deref) rule, if �′ �G �E��, a
contradiction. The other cases are standard.

An immediate consequence of these results and Lemma 2.2 is:
Theorem (Type Safety) 4.5. Let M be a typable closed expression, with
�;F ;Γ �G M : s, τ , and let µ be such that u�,θ ∈ dom(µ) ⇒ �;F ;Γ �G

µ(u�,θ) : ⊥, θ. Then either the reduction of (M,µ) with respect to (�,G) does
not terminate, or there exist a value V ∈ Val and a memory µ′ such that � �G

(M,µ) ∗→ (V, µ′) with �;F ;Γ �G V : ⊥, τ .
In particular, this shows that the dynamic checking of the reading clearance (by
means of a “stack inspection” mechanism) is actually not needed regarding a
typable program, which never attempts to access a reference for which it would
not have the appropriate access right.

5 Secure Information Flow

In [1], the authors have proposed a generalization of the usual non-interference
property that allows one to deal with declassification. The idea is to define a
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program as secure if it satisfies a “local non-interference” property, called the
non-disclosure policy, which roughly states that the program is, at each step
of its execution, non-interfering with respect to the current flow policy, that is
the global flow policy extended by the one granted by the evaluation context.
Technically, a program will be considered as secure if it is bisimilar to itself. As
usual, this property relies on preserving the “low equality” of memory. Roughly
speaking, two memories are equal up to level � if they assign the same value
to every location with security level lower than �, with respect to a given flow
policy. In order to deal with reference creation, we only compare memories on the
domain of references they share – then the “low equality” of memory is actually
not an equivalence (it is not transitive). Nevertheless, we keep the standard
terminology. The “low equality” of memories, with respect to a current flow
policy F , and to a security level � regarded as “low,” is thus defined:

µ �F,� ν ⇔def ∀u�′,θ ∈ dom(µ) ∩ dom(ν). �′ �F � ⇒ µ(u�′,θ) = ν(u�′,θ)

From an information flow point of view, the notion of a secure program actually
depends on the default access right. For instance, the assignment v�′ := !u� where
� ��G �′, which is usually taken as a typical example of an unsecure program,
is indeed secure (in the sense of [6]) in the context of a default access level �′′

such that � ��G �′′ (but in that case this program attempts a confidentiality
violation, as regards access control). Then our definition of secure programs is
parameterized by a default access level, and, as in [1], by a global flow policy.
Definition (Bisimulation) 5.1. A (�,G, �′)-bisimulation is a symmetric rela-
tion R on expressions such that if M RN and � �G (M,µ) → (M ′, µ′) with
M = E[R] where R is a redex, and if ν is such that µ �G∪�E�,�′

ν and
u�′′,θ ∈ dom(µ′ − µ) implies that u is fresh for ν, then there exist N ′ and ν′

such that � �G (N, ν) ∗→ (N ′, ν′) with M ′RN ′ and µ′ �G,�′
ν′.

Remarks and Notation 5.2.
(i) For any �, G and �′ there exists a (�,G, �′)-bisimulation, like for instance the
set Val × Val of pairs of values.
(ii) The union of a family of (�,G, �′)-bisimulations is a (�,G, �′)-bisimulation.
Consequently, there is a largest (�,G, �′)-bisimulation, which we denote ◊�,G,�′

.
This is the union of all such bisimulations.

One should observe that the relation ◊�,G,�′
is not reflexive. Indeed, a process

which is not bisimilar to itself, like v�′ := !u�′′ where � ��G �′′ �G �, is not
secure. As in [20], our definition states that a program is secure, with respect to
a default access level and a given global flow policy, if it is bisimilar to itself:
Definition (The Non-Disclosure Policy) 5.3. A process P satisfies the
non-disclosure policy (or is secure from the confidentiality point of view) with
respect to the default access level � and the global flow policy G if it satisfies
P ◊�,G,�′

P for all �′. We then write P ∈ ND(�,G).

For explanations and examples regarding the non-disclosure policy, we refer to
[1]. Our second main result is that the type system guarantees secure information
flow, whatever the default access right is:
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Theorem (Soundness). If M is typable in the context of the access level �,
a global flow policy G and a local policy F , that is if for some Γ , s and τ we
have �;F ;Γ �G M : s, τ , then M satisfies the non-disclosure policy with respect
to F ∪G, that is M ∈ ND(�′, F ∪G), for all �′.

The proof of this result is very similar to the one of Type Soundness in the revised
version of [1]. As usual with bisimulation proofs, one has to find an appropriate
candidate relation, that contains the pairs (M,M) of typable expressions, and
which is closed with respect to the co-inductive property. The constructs for
managing access control do not add much complexity to this proof.

6 Conclusion

We have shown a way of integrating access control and information flow control
in the setting of a high-level programming language, involving a declassification
construct. Our “state-oriented” approach, that we share with [2], differs from the
“value-oriented” approach (that one has to adopt when dealing with purely func-
tional languages) that is followed in [8,17,23] to deal with stack inspection, and
[16,22] as regards information flow control (see also [18] for further references).
We think that assuming that confidentiality levels are assigned to “information
containers” is more in line with the usual way of dealing with confidentiality than
assigning security levels to values, like boolean tt and ff , integers or functions.
In this way, the safety property guaranteed by access control is quite simple and
natural, and this also provides a natural restriction on the use of declassification,
and, more generally, information flow.
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Reasoning About Delegation and Account
Access in Retail Payment Systems

Shiu-Kai Chin and Susan Older
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Abstract. Delegation and trust are essential to the smooth operation of
large, geographically distributed systems, such as the US electronic retail
payment system.This system supports billions of electronic transactions—
from routine banking and store purchases to electronic commerce on the
Internet. Because such systems provide the electronic fabric of our net-
worked information society, it is crucial to understand rigorously and pre-
cisely the basis for the delegation and trust relationships in them. In this
paper, we use a modal logic for access control to analyze these relationships
in the context of checks (and their electronic equivalents) as payment in-
struments. While not free from risk, the retail payment system effectively
balances trust, delegation, and risk on billions of transactions. Our logic
allows us to explore with rigor the details of trust, delegation, and risk in
these transactions.

Keywords: Access control, delegation, trust, retail payment systems,
modal logic.

1 Introduction

You may be deceived if you trust too much, but you will live in torment
if you don’t trust enough.—Frank Crane

Trust—by which we mean the willingness to adopt someone else’s beliefs as
one’s own—is central to the operation of the electronic retail payment system in
the US. Trusted delegates operate on behalf of consumers, banks, and financial
networks throughout the retail payment system, which handles many billions of
transactions yearly.

Systems such as the retail payment system exemplify critical systems that are
large, geographically distributed, part of critical infrastructure, and widely used.
The electronic retail payment system in particular uses delegation extensively and
depends on trust relationships each and every step of the way. Systems engineers
who build such systems are ultimately responsible for assuring that the system be-
haves securely—in this case allowing account access to only those who should have
access. Providing this assurance means engineers need formal tools to describe and
analyze trust, delegation, and access policies to derive and justify access-control
decisions. These tools ideally are both simple and effective. An engineering artifact
will often produce an effect that is not precisely understood and demands scien-
tific analysis. In the case of large distributed systems, the retail payment system
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largely works in a trustworthy fashion. Our objective is to describe and analyze
the retail payment system so that we know precisely why it works.

In this paper, we incorporate a formal accounting of delegation into a modal
logic for access control, described initially in [1,2] and based on the work of Lamp-
son, Abadi, Burrows and colleagues [3,4]. The extension itself is quite simple,
but it seems to work well for analyzing fairly complicated systems. To demon-
strate its suitability for use by engineers, we use the logic to formally explicate
the policies, delegations, and trust assumptions on which the United States’
Automated Clearing House (ACH) network [5] depends. The ACH network is
used by depository financial institutions (e.g., banks) to settle large numbers of
financial transactions on a daily basis. These transactions are handled electron-
ically according to the rules of the ACH network, using check truncation: the
physical checks are removed from the payment-processing process, and instead,
information from checks is transmitted electronically via the ACH network. The
original checks are usually destroyed shortly after they are received by banks.
As mandated by the Check 21 Act [6], the substitute electronic checks have the
same legal standing as the original paper checks.

The remainder of this paper is organized as follows. In Section 2 we describe
our logic for reasoning about access control and introduce our extension for del-
egation. Section 3 presents how electronic checks are used in the ACH network.
We conclude in Section 4.

2 A Logic for Reasoning About Access Control

To keep this paper self-contained, we provide a brief introduction to the access-
control logic described in detail in [2,1]. In Section 2.4, we introduce a minor
extension to capture delegation and its essential properties.

2.1 Overview of the Logic

Principal Expressions. We start out by introducing a collection of principal
expressions, ranged over by P and Q. Letting A range over a countable set of
simple principal names, the abstract syntax of principal expressions is given as
follows:

P ::= A / P&Q / P | Q

The principal P&Q (“P in conjunction with Q”) represents an abstract principal
who makes exactly those statements made by both P and Q; P | Q (“P quot-
ing Q”) represents an abstract principal corresponding to principal P quoting
principal Q.

Access Control Statements. The abstract syntax of statements (ranged over by
ϕ) is defined as follows, where P and Q range over principal expressions and p
ranges over a countable set of propositional variables :
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ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Informally, a formula P ⇒ Q (pronounced “P speaks for Q”) indicates that
every statement made by P can also be viewed as a statement from Q. A formula
P controls ϕ is syntactic sugar for the implication (P says ϕ) ⊃ ϕ: in effect, P is
a trusted authority with respect to the statement ϕ. P reps Q on ϕ denotes that
P is Q’s delegate on ϕ; it is syntactic sugar for (P says (Q says ϕ)) ⊃ Q says ϕ.
Notice that the definition of P reps Q on ϕ is a special case of controls and in
effect asserts that P is a trusted authority with respect to Q saying ϕ.

2.2 Semantics

The semantics of formulas is based on Kripke structures, as given by the following
definitions.

Definition 1. A Kripke structure M is a three-tuple 〈W, I, J〉, where:

– W is a nonempty set, whose elements are called worlds.
– I : PropVar → P(W ) is an interpretation function that maps each propo-

sitional variable p to a set of worlds.
– J : PName → P(W ×W ) is a function that maps each principal name A

to a relation on worlds (i.e., a subset of W ×W ).

We extend J to work over arbitrary principal expressions using set union and
relational composition as follows:

J(P&Q) = J(P ) ∪ J(Q)
J(P | Q) = J(P ) ◦ J(Q),

where

J(P ) ◦ J(Q) = {(w1, w2) | ∃w′.(w1, w
′) ∈ J(P ) and (w′, w2) ∈ J(Q)}

Definition 2. Each Kripke structure M = 〈W, I, J〉 gives rise to a function

EM[[−]] : Form → P(W ),

where EM[[ϕ]] is the set of worlds in which ϕ is considered true. EM[[ϕ]] is defined
inductively on the structure of ϕ, as shown in Figure 1.

Note that, in the definition of EM[[P says ϕ]], J(P )(w) is simply the image of
world w under the relation J(P ).

2.3 Inference Rules

The semantic functions EM provide a fully defined and fully disclosed interpre-
tation for the formulas of the logic. This mathematical foundation enables us
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EM[[p]] = I(p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

�
W, if J(Q) ⊆ J(P )
∅, otherwise

EM[[P says ϕ]] = {w|J(P )(w) ⊆ EM[[ϕ]]}
EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P | Q says ϕ ⊃ Q says ϕ]]

Fig. 1. Semantics

to provide a means to reason about access-control situations using a small core
collection of sound inference rules and syntactic-sugar definitions (see Figure 2),
along with a larger set of rules that can be formally derived from the core rules
(see Figure 3 for a sample set of derived rules that we have found particularly
useful).

A rule of form
H1 · · ·Hn

C
is sound provided that, for all Kripke structures

M = 〈W, I, J〉, if EM[[Hi]] = W for each i ∈ {1, . . . , n}, then EM[[C]] = W . The
rules in Figures 2 and 3 are all sound, and become the basis for reasoning about
access-control decisions. The Kripke structures are then only necessary if one
wishes to add new inference rules and to verify their soundness.

2.4 Delegation and Its Properties

Delegation is an important relationship in networks where decisions and author-
ities are distributed in different locations. When principal P acts on behalf of
principal Q, we say that P is Q’s delegate. P acting as Q’s delegate on the
statement ϕ, denoted by P reps Q on ϕ, is defined as syntactic sugar:

P reps Q on ϕ
def= (P says (Q says ϕ)) ⊃ Q says ϕ

Essentially, if P is Q’s representative on statements ϕ, then P claiming Q has
said ϕ is treated as if Q said ϕ herself.

There are three crucial properties of the delegation relationship that our logic
(or any other formal system) must accurately capture:

1. A recognized delegate should in fact have the authority to act on behalf
of the principals they represent. That is, if a given policy allows principals
to delegate to others and recognizes that Bob is Alice’s delegate, then Bob
should be able to act on Alice’s behalf.
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Taut
ϕ

if ϕ is an instance of a
prop-logic tautology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′ Says
ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P | Q says ϕ ≡ P says Q says ϕ

&Says
P&Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of ⇒
P ⇒ P

Monotonicity of | P ′ ⇒ P Q′ ⇒ Q

P ′ | Q′ ⇒ P | Q

Associativity of | P | (Q | R) says ϕ

(P | Q) | R says ϕ

P controls ϕ
def= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def= P | Q says ϕ ⊃ Q says ϕ

Fig. 2. Core Inference Rules

2. Delegates generally should not be able to restrict the scope of their duties as a
principal’s representative. For example, suppose that Alice delegates to Bob
the task of withdrawing $500 from her checking account and depositing it to
her savings account. Bob should not be able to withdraw the funds without
also depositing them; to do so would be a violation of his responsibilities,
not to mention theft.

3. The delegation relationship generally is not transitive: a delegate should not
be able to pass on his responsibilities to someone else.

The first property—that recognized delegates should be able to act on behalf
of the principals they represent—is reflected by the Reps rule stated below and
in Figure 3:

Reps
Q controls ϕ P reps Q on ϕ P | Q says ϕ

ϕ

This rule states that if Q is authorized to perform ϕ, P is recognized as Q’s
delegate on ϕ, and P requests ϕ on Q’s behalf, then the request for ϕ should be
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Conjunction
ϕ1 ϕ2

ϕ1 ∧ ϕ2

Simplification (1)
ϕ1 ∧ ϕ2

ϕ1
Simplification (2)

ϕ1 ∧ ϕ2

ϕ2

Quoting (1)
P | Q says ϕ

P says Q says ϕ
Quoting (2)

P says Q says ϕ

P | Q says ϕ

&Says (1)
P&Q says ϕ

P says ϕ ∧ Q says ϕ
&Says (2)

P says ϕ ∧ Q says ϕ

P&Q says ϕ

Controls
P controls ϕ P says ϕ

ϕ
Derived Speaks For

P ⇒ Q P says ϕ

Q says ϕ

Reps
Q controls ϕ P reps Q on ϕ P | Q says ϕ

ϕ

Rep Says
P reps Q on ϕ P | Q says ϕ

Q says ϕ

Fig. 3. Derived Rules Used in this Paper

granted. This rule can be derived from the sound rules of Figure 2 and thus is
sound itself.

The second and third properties both state things that should not happen. For
that reason, it is necessary to verify that our definition of delegation prohibits
the reduction or passing on of delegation duties. The following two rules, which
would allow the undesired behavior, can easily be shown to be unsound with
respect to the Kripke semantics:

Unsound Rule!
P reps Q on ϕ1 ∧ ϕ2

P reps Q on ϕ1

Unsound Rule!
P reps Q on ϕ Q reps R on ϕ

P reps R on ϕ

The original papers by Lampson, Abadi and colleagues [3,4] introduced a
notion of delegation based on a “fictional delegation server”, whose purpose was
to co-sign or back up any of a delegate’s authentic requests. Their notion of
delegation was a universal one: if Bob is Alice’s delegate, then Bob represents
Alice on all statements, not only on specifically designated ones. Furthermore,
access policies had to specifically name delegates in addition to the principals
they represented (e.g., Bob for Alice controls ϕ).

Our definition of delegation is a much simpler one, but we believe that the
soundness of the Reps rule and the lack of soundness of the two undesired rules
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provide supporting evidence of its correctness. The next section demonstrates its
suitability for reasoning about fairly complicated situations, such as how checks
work as payment instruments within the retail payment system.

3 Checking Using an Electronic Clearing House Network

In this section we describe a banking network that uses electronic credits and deb-
its and the Automated Clearing House (ACH) network—a trusted third-party
settlement service. Detailed descriptions of retail payment systems and the ACH
network can be found in the Federal Financial Institutions Examination Council’s
handbook on Retail Payment Systems [7] and the National Automated Clearing
House Association’s guide to rules and regulations governing the ACH network[5].

We pay particular attention to patterns of description and patterns of reason-
ing. The patterns of description take the form of definitions—typically formal
definitions of financial instruments, statements of jurisdiction, and policy state-
ments. Patterns of reasoning take the form of derived (and thus inherently sound)
inference rules that reflect the implicit access-control decisions being made in
the retail payment system. We include the formal proofs that justify the access-
control decisions being made. These proofs are simple and show explicitly the
trust relationships upon which the decisions are being made. We believe the
combination of simplicity, precision, clarity, and soundness are of tremendous
benefit to systems engineers and certifiers who build and evaluate complicated
systems where delegation is widely used.

As we will be focusing on how checks and endorsed checks are used, we give them
formal definitions. We adopt the notational convention that atomic (indivisible)
actions are surrounded by “〈” and “〉”. For example, 〈debit $100, acctAlice〉 is inter-
preted as the atomic proposition “it would be a good idea to debit Alice’s account by
$100.” To save space, we also adopt the notational abbreviationP controls+says ϕ
to denote the two statements:P controls ϕ andP says ϕ. We useP controls+says ϕ
in describing policies, but use both P controls ϕ and P says ϕ in formal proofs.

Definition 3. A check is an order from a principal (known as the payer) upon
a bank to draw upon the payer’s deposit of funds to pay a certain amount of
money to another principal (known as the payee). If P is the payer and Q is the
payee, we represent a check written by P to Q as follows:

SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)
The check associates P ’s signature with the statement to pay Q and to debit
P ’s account. As our subsequent analysis will show, one must be able to associate
statements made by SignatureP with P ; this association is represented in the
logic as SignatureP ⇒ P .

Definition 4. A check is endorsed when the payee signs the check issued to him
or her. If P is the payer and Q is the payee, we represent a check written by P
and endorsed by Q as follows:

SignatureQ | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)
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The banking system uses clearing houses (or clearing corporations) to collect
and settle individual transactions while minimizing the payments made between
banks.

Definition 5. [7] defines a clearing corporation as follows:

A central processing mechanism whereby members agree to net, clear,
and settle transactions involving financial instruments. Clearing corpo-
rations fulfill one or all of the following functions:
– nets many trades so that the number and the amount of payments

that have to be made are minimized,
– determines money obligations among traders, and
– guarantees that trades will go through by legally assuming the risk of

payments not made or securities not delivered. This latter function is
what is implied when it is stated that the clearing corporation becomes
the “counter-party” to all trades entered into its system. Also known
as a clearinghouse or clearinghouse association.

To understand how a clearing house works, suppose that some depositors of
BankP and BankQ exchange a total of two checks as follows during the day:

1. Bob, a BankQ depositor deposits a $100 check from Alice, a BankP depos-
itor.

2. Dan, a BankP depositor deposits a $250 check from Carol, a BankQ depos-
itor.

BankP and BankQ send the deposited checks to a clearing house to total up the
transactions between them. The clearing house will let each bank know how much
it owes (or is owed) to (or from) other banks to settle their accounts each banking
day. In this example, BankP and BankQ settle by having BankQ transfer $150
to BankP . BankP will credit $250 to Dan’s account and debit Alice’s account
by $100. BankQ will credit $100 to Bob’s account and debit $250 from Carol’s
account. In the (hopefully) unlikely event that BankQ is unable to cover its
debts, the clearing house will pay BankP what it is owed.

Another feature that provides the benefits of faster processing of checks to
banks and consumers is the practice of check truncation.

Definition 6. [7] defines check truncation as follows:

The practice of holding a check at the institution at which it was de-
posited (or at an intermediary institution) and electronically forwarding
the essential information on the check to the institution on which it was
written. A truncated check is not returned to the writer.

Banks and other financial institutions use electronic check conversion (ECC) to
convert endorsed physical checks into legally equivalent check images in support
of check truncation.
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Definition 7. Electronic check conversion is the process of using magnetic-
ink character recognition (MICR) to capture information from a check’s MICR
line, including: the bank’s routing number, account number, check number, check
amount, and other information that are printed near the bottom of the check in
magnetic ink in accordance with generally applicable industry standards.

We represent BankQ’s ECC of an endorsed check as:

ECCBankQ says (Q | SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)

When electronically converted checks are used in the context of check trun-
cation, this is known as electronic check presentment.

Definition 8. [7] defines electronic check presentment (ECP) as follows:

Check truncation methodology in which the paper check’s MICR line
information is captured and stored electronically for presentment. The
physical checks may or may not be presented after the electronic files are
delivered, depending on the type of ECP service that is used.

BankQ’s presentation of the electronic check image can be represented as:

BankQ says (ECCBankQ says

(Q | SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))

The above formula states that BankQ is relaying the output of its ECC process.
Presumably, BankQ only makes this statement (i.e., vouches for its electronic
check conversion process) when it believes the process is working correctly.

Figure 4 illustrates the use of a clearing house and check images. Bob, the
payee, deposits Alice’s check at his bank. Bob’s bank does not present the check
endorsed by Bob to Alice’s bank directly. Rather, Bob’s bank truncates the check,
credits Bob’s account, and sends an electronic version of the check (usually in a
batch with other orders) to an Automated Clearing House (ACH) operator, who
sends the image and information to Alice’s bank to debit Alice’s account. The
ACH operator settles the accounts between Alice’s and Bob’s respective banks
each day.

Clearing corporations such as the Federal Reserve Banks guarantee payments
for depository financial institutions using services such as FedACH. Consequently,
the Federal Reserve Banks take on the financial risk if a depository financial insti-
tution (DFI) defaults and has insufficient funds to settle. Hence, both ACH and
the DFIs are signatories to transactions. Thus, ACH is not merely relaying infor-
mation but assuming liability.

We represent the presentation of a check image created byBankQ | ECCBankQ

by an ACH operator ACH as follows:

((ACH&BankQ) | ECCBankQ ) | Q says (SignatureP says

(〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))
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Fig. 4. Interbank Checking Using an Automated Clearing House

The operator is functioning as a clearing corporation and counter signs the
check image. By so doing, the ACH operator assumes the risk of the transaction
if BankP defaults at settlement time.

In this system checks are cleared immediately without first checking balances.
If there is an insufficient balance to cover the amount of the check, the check in
question is returned to the depositor and the amount ultimately charged back to
his or her account as a separate transaction. In Figure 4, if Alice’s check bounces,
then Alice’s check (or a truncated version of her check) is returned by her bank
to the ACH operator to debit Bob’s bank the amount of the returned check.

Authorities, Jurisdiction, and Policies. The controlling authorities in this
case include the bank owners with the addition of the Automated Clearing House
(ACH) association, whose rules all members agree to follow as a condition of
membership. Our analysis starts with BankP , as it is the paying bank.
BankP : At the individual account level, depositors are allowed to write checks.

If there are insufficient funds in the account, another transaction will reverse the
debit. Therefore, the policy allowing checks to be written is given below:

BankP Owner controls+says (P controls (〈Pay amt, Q〉∧〈debit amt, acctP 〉))

The policy allows payees to be delegates of the payers indicated on checks:

BankP Owner controls+says (Q reps P on (〈Pay amt, Q〉∧〈debit amt, acctP 〉))
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Applying the Controls inference rules to the above statements produces the
following policy statements for BankP :

P controls (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)
Q reps P on (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)

Because BankP is part of the ACH network, it recognizes ACH as a counter
signer with the ACH network banks that use ECP:

BankP Owner controls+says

((ACH&BankQ) | ECCBankQ) reps (Q | SignatureP ) on

(〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)

Using the Controls inference rule, we derive BankP ’s policy regarding check
images and information forwarded to it by ACH :

((ACH&BankQ) | ECCBankQ ) reps (Q | SignatureP ) on

(〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)

ACH : The ACH operator only accepts transactions from ACH members. In
this example, the policies for the ACH operator regarding BankP and BankQ

are as follows:

BankP controls 〈Pay amt, Q〉

The above states that the ACH operator will accept a payment from BankP as
part of the settlement process. The next formula states that BankQ is allowed
to present electronically converted checks to the operator:

BankQ reps ECCBankQ on

(Q | SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))

BankQ: The controlling authority for BankQ is BankQ’s owner. The following
statements are a result of recognizing BankP as a banking partner as part of the
ACH network (this would be determined from the MICR line). The first policy
states that checks drawn upon accounts in BankP may be deposited in BankQ’s
accounts:

BankQ Owner controls+says

((Q | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)) ⊃
(〈Pay amt, Q〉 ∧ (Q controls 〈credit amt, acctQ〉))

We are assuming here that funds are immediately available (i.e., there is no
float time). The second policy states that BankQ recognizes ACH ’s settlement
statement:

BankQ Owner controls+says (ACH controls 〈Pay amt, Q〉)
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Applying the Controls inference rule to the above statements produces the
following policies for BankQ:

((Q | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)) ⊃
(Q controls 〈credit amt, acctQ〉 ∧ 〈Pay amt, Q〉))

and

ACH controls 〈Pay amt, Q〉

Operating Rules. There are five access-control decisions to be made, corre-
sponding to the arrows labeled 3–8 in Figure 4. The first decision (arrow 3) is
made by BankQ. This decision corresponds to Bob’s request to deposit Alice’s
check, credit his account by the same amount, and have the funds made available
to him. This decision is made by the ACH Check Deposit rule, whose proof is in
Figure 5:

ACH
Check
Deposit

SignatureQ | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)
SignatureQ says 〈credit amt, acctQ〉

SignatureQ ⇒ Q
(Q | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)) ⊃

〈Pay amt, Q〉 ∧ (Q controls 〈credit amt, acctQ〉)
〈Pay amt, Q〉 ∧ 〈credit amt, acctQ〉

The second decision (arrow 4) is also made by BankQ, which must decide
whether or not to electronically present the check endorsed by Q to the ACH
operator. If the check is endorsed by a depositor Q of BankQ, SignatureQ is
Q’s signature, and the check itself passes whatever integrity check is used by
the bank, then the check is converted to its electronic version and passed on to
the ACH operator. This decision is made by the ACH Check Presentation rule,
which is proved in Figure 6:

ACH
Check

Presenta-
tion

SignatureQ | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)
SignatureQ ⇒ Q

BankQ says (ECCBankQ
says (Q | SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))

The third decision (arrow 5) is made by the ACH operator to counter sign
the electronically converted check and present it to BankP . This decision uses
the ACH Counter Sign rule, whose proof is in Figure 7:

ACH
Counter
Sign Rule

BankQ says (ECCBankQ
says

(Q | SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))
BankQ reps ECCBankQ

on
(Q | SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))

(ACH&BankQ) says (ECCBankQ
says ((Q | SignatureP ) says

(〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)))
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1. SignatureQ | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉) Endorsed Check
2. SignatureQ says 〈credit amt, acctQ〉 Deposit Slip
3. SignatureQ ⇒ Q Signature on File
4. (Q | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)) ⊃ BankQ Policy

〈Pay amt, Q〉 ∧ (Q controls 〈credit amt, acctQ〉)
5. SignatureP ⇒ SignatureP Idempotency of ⇒
6. SignatureQ | SignatureP ⇒ Q | SignatureP Monotonicity of |
7. Q | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉) 6, 1 Derived Speaks

For
8. 〈Pay amt, Q〉 ∧ (Q controls 〈credit amt, acctQ〉) 7, 4 Modus Ponens
9. 〈Pay amt, Q〉 8 Simplification (1)

10. Q controls 〈credit amt, acctQ〉 8 Simplification (2)
11. Q says 〈credit amt, acctQ〉 3, 2 Derived Speaks

For
12. 〈credit amt, acctQ〉 10, 11 Controls
13. 〈Pay amt, Q〉 ∧ 〈credit amt, acctQ〉 9, 12 Conjunction

Fig. 5. Proof of ACH Check Deposit

The fourth decision (arrows 6 and 7) is made by BankP to debit the appro-
priate account and pay toward settlement. This rule (ACH Check Funding) is
proved in Figure 8:

ACH
Check
Funding

(ACH&BankQ) says (ECCBankQ
says ((Q | SignatureP ) says

(〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)))
((ACH&BankQ) | ECCBankQ

) reps Q on
(SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))

SignatureP ⇒ P
P controls (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)
Q reps P on (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)

(BankP says 〈Pay amt, Q〉) ∧ 〈debit amt, acctP 〉

The final decision (arrow 8) is made by the ACH operator using the ACH
Check Settlement Rule, which is proved in Figure 9.

ACH Check Settlement Rule

BankP says 〈Pay amt, Q〉
BankP controls 〈Pay amt, Q〉

ACH says 〈Pay amt, Q〉

Risks. All of the risks of paper-based checking are present in the ACH system.
There is an additional risk incurred here, because in practice the ACH system
does not look up signatures to ensure that the signature on a check matches
a signature on file. Instead, checking a signature occurs only when a customer
complains about a fraudulent check.

Despite the potential risks, the ACH system is largely trustworthy. The ACH
system is highly automated and runs on exceptions, so that large numbers of
transactions are cleared daily. Transactions are largely assumed to be legitimate,
and the evidence in terms of the number of checks returned unpaid supports this.
The 2004 Federal Reserve Payments Study [8] reported:

In 2000, the number of checks returned unpaid was 0.6 percent of checks
paid by depository institutions, compared to 0.5 percent in 2003. The
value per returned check has remained relatively unchanged: $756 [in
2003] compared to $747 . . . [in 2000].
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1. SignatureQ | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉) Endorsed Check
2. SignatureQ ⇒ Q Signature on File
3. SignatureP ⇒ SignatureP Idempotency of ⇒
4. SignatureQ | SignatureP ⇒ Q | SignatureP Monotonicity of |
5. Q | SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉) 4, 1 Derived Speaks

For
6. ECCBankQ

says (Q |
SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))

6 Says

7. BankQ says ECCBankQ
says (Q |

SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))
7 Says

Fig. 6. Proof of ACH Check Presentation

1. BankQ says (ECCBankQ
says (Q |

SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))
Presented Check

2. BankQ reps ECCBankQ
on (Q |

SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))
ACH policy

3. BankQ | ECCBankQ
says ((Q |

SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))
1 Quoting (2)

4. ECCBankQ
says ((Q |

SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))
2, 3 Rep Says

5. ACH says (ECCBankQ
says ((Q |

SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)))
4 Says

6. ACH&BankQ says (ECCBankQ
says ((Q |

SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)))
5, 1 &Says (2)

Fig. 7. Proof of ACH Counter Sign Rule

1. (ACH&BankQ) says (ECCBankQ
says ((Q |

SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉)))
Check presented by
ACH

2. ((ACH&BankQ) | ECCBankQ
) reps Q on BankP policy

(SignatureP says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))
3. SignatureP ⇒ P Signature on File
4. P controls (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉) BankP policy
5. Q reps P on (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉) BankP policy
6. (ACH&BankQ | ECCBankQ

) says ((Q |
SignatureP ) says (〈Pay amt, Q〉 ∧ 〈debit amt, acctP 〉))

1 Quoting (2)

Fig. 8. Proof of ACH Check Funding

1. BankP says 〈Pay amt, Q〉 BankP authorizing payment to Q
2. BankP controls 〈Pay amt, Q〉 ACH’s policy to rely/trust in BankP ’s authorization
3. 〈Pay amt, Q〉 2, 1 Controls
4. ACH says 〈Pay amt, Q〉 3 says

Fig. 9. Proof of ACH Check Settlement Rule

The ACH rules [5] and Check 21 regulations [6] add consistency and uniformity
of operations and formats that supports delegation and trust. Speeding up the
processing of checks due to check truncation reduces the float time for checks
and works against frauds such as check kiting. Guarding against fraud ultimately
depends on the consumer’s awareness and diligence in monitoring transactions.
The ability, willingness, and speed with which consumers are able to detect
“exceptions” varies and is likely the largest risk in the payment system.
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4 Conclusions

Systems engineering is difficult in part because of the myriad interacting compo-
nents and the often crucial and undocumented assumptions about the context
in which a component, subsystem or system will operate. (A particularly stun-
ning example was the loss of the Mars Climate Orbiter due to Lockheed Martin
engineers assuming an English interpretation of data while NASA engineers as-
sumed a metric interpretation). In systems where delegates are used extensively
and access-control decisions are made automatically, it is crucial to understand
and precisely document how and why these decisions are made. Understanding
of complicated systems is best served when the underlying formal system of rea-
soning is simple yet effective. We believe our logic for delegation and trust has
these properties and is a useful tool for systems engineers and system certifiers.

Regarding the check-based retail payment system itself, using the access-
control logic brings the intricacies of trust and delegation to the fore. These
intricacies include precise statements about who is trusted on precisely what
statements. Using the logic and delegation definitions, we are able to formally
justify what amounts to the access-control decisions made in the retail payment
system. Not only does this provide insight into how the system works, it also
provides a precise specification for how the check-based system should behave.
While we have focused entirely on paper and electronic checks, a similar de-
scription and analysis should hold for other payment instruments, such as credit
cards, debit cards, and stored-value cards.

Our long-term goal is to provide to systems engineers a similar combination of
accessibility, usability, and rigor that hardware engineers enjoy with digital logic.
In particular, digital logic is the foundation of hardware design and verification.
It is introduced at the introductory undergraduate level to explain core concepts
with precision. At more advanced levels, digital logic provides the formal basis
for computer-aided design tools such as verifiers and synthesizers.

We have used our access-control logic to describe a variety of systems, in-
cluding everyday situations such as airport security, web-based services such as
CORBA [1], control of physical memory [9,10], and role-based access control [2].
We have incorporated our logic into courses at both the undergraduate and grad-
uate levels [11,10]. In our experience, this logic is accessible to rising juniors and
seniors in computer science and computer engineering. These experiences lead us
to believe that the goal of giving engineers simple, effective, and mathematically
sound tools for assuring security is feasible and within reach.
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Abstract. We consider a cryptographic scenario of two honest parties
which share no secret key initially, but their final goal is to generate an
information-theoretical secure key. In order to reach this goal they use
assistance of some trusted center (as a satellite) that broadcasts a ran-
dom string to legal users over noisy channels. An eavesdropper is able
to receive also this string over another noisy channel. After an execu-
tion of the initialization phase, legal parties use discussion over noiseless
public channels existing between them. The eavesdropper can intervene
in the transmission and change the messages transmitted by legal par-
ties. Thus, it is necessary to provide authentication of these messages.
Otherwise the legal parties may agree a false key with the eavesdropper
instead. In this paper we develop a concept of authentication based on
noisy channels and present a performance evaluation of authentication
procedures both for non-asymptotic and asymptotic cases.

Keywords: Authentication, Bhattacharyya distance, error correcting
codes, wiretap channels.

1 Introduction

1.1 Model for Key Distribution in Presence of Active Eavesdropper

Let us consider the model of key distribution between legal users Alice (A) and
Bob (B) in the presence of an active adversary Eve (E) assuming that initially
the legal users had no shared secret keys (Fig. 1).

The key distribution protocol (KDP) consists of two phases: the initialization
phase and the key generation phase.

In the initialization phase A, B, and E receive random i.i.d. sequences X =
(xi)

k
i=1 , Y = (yi)

k
i=1, Z = (zi)

k
i=1 ∈ {0, 1}k, respectively, such that for each i,

pm = Pr (xi �= yi) and pw = min {Pr (xi �= zi) ,Pr (yi �= zi)}. One of the meth-
ods to provide legal users A, B with the sequences X , Y is to generate the
truly random sequence S = (si)

k
i=1 ∈ {0, 1}k, by some trusted party, say source

S, and then to transmit it to the legal users A and B over noisy channels

V. Gorodetsky, I. Kotenko, and V.A. Skormin (Eds.): MMM-ACNS 2007, CCIS 1, pp. 115–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Model of the Key Distribution Protocol

(source model [1,2]). Let us assume A and B receive sequences X , Y over bi-
nary symmetric channels without memory (BSC) with error probabilities πA =
Pr (xi �= si), πB = Pr (yi �= si) , while the adversary E receives the sequence Z
over a BSC with the error probability of the wiretap πE = Pr (zi �= si). One may
imagine that the source S is some friendly satellite transmitter or some remote
transmitter on Earth or even a natural space source as a pulsar (although the
last case is rather exotic since it would be very complex and expensive to arrange
the directional antenna devices and a powerful signal processor for such weak
signals).

After the execution of the initialization phase, the source model can be re-
duced to the channel model where user A sends the sequence X to user B who
receives it as Y , whereas E receives X as Z. Then the error probability on the
main virtual BSC between A and B is pm = πA+πB−2πAπB and the probability
of the wiretap virtual BSC from B to E is pw = πB + πE − 2πBπA.

In KDP’s initialization phase it is natural to assume that the adversary E is
unable to intervene the transmission from S to A and B. But this is not the case
when legal users are exchanging information over a public discussion channel
(PDC) at the key generation phase. We note that the use of PDC is necessary
to send check symbols for agreement test of the strings X and Y and even for
hash function transmission [3]. E can receive all information transmitted over the
PDC. We assume that the PDC’s between legal users and E are noiseless BSC’s
if E does not intervene in transmission. However E can replace this information
as desired and therefore it is necessary to authenticate signals transmitted over
PDC to detect any intervention of E and to reject suspicious messages.
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1.2 Authentication Based on Noisy Channels

In order to solve the above stated problem it is necessary firstly to design a
keyless message authentication based on noisy channels. In [2] a special code
type has been proposed aiming to this problem: the authentication codes (AC).
Let us describe the authentication procedure: in an initialization phase the legal
users share the strings X , Y over BSC (Pr (xi �= yi) = pm) and agree an error
correcting binary but not necessary linear (n, k)-code V of length n consisting
of 2k codewords in order to authenticate any message of length k.

The authenticator a = (a1, a2, . . . , an) of a message m is formed as follows:
for each i, let vi be the i-th bit of the codeword in V corresponding to m and let
ai = xi if vi = 1 or let it undefined otherwise. After receiving a pair (m̃, ã), user
B forms similarly ˜̃a for the message m̃ using his string Y and compares ˜̃a with
ã. If the number of bit disagreements is less or equal than a given threshold ∆
then message m̃ is assumed authentic, otherwise it is rejected.

The AC’s [2] efficiency can be characterized by two probabilities:

Pf : The probability of false removal of the message although the adversary E
does not intervene at all.

Pd: The probability of deception false information: the event in which E has
forged the message and this fact is not detected by B.

In sections 2, 3 we present an AC’s performance evaluation for non-asymptotic
and asymptotic (as k → +∞) cases. In section 4 we consider another authentica-
tion method not based on AC’s. Section 5 states conclusions and open problems.

2 Performance Evaluation of AC’s

As remarked in [2], AC’s efficiency does not depend directly on the ordinary
minimum code distance of V but on the minimum asymmetric semidistance d01:

Definition 1. The asymmetric semidistance d01 of the code V is the minimal
number of 0, 1-symbol transitions among any pairs of distinct codewords in V :

d01 = min {d01(v, v′) = # {i ≤ n| vi = 0 & v′i = 1} | v �= v′, v, v′ ∈ V }
In order to provide equality in authentication efficiency among all messages we
restrict our consideration to constant Hamming-weight codes.

Theorem 1. Let V be an (n, k)-AC with constant Hamming weights τ for nonzero
codewords and asymmetric semidistance d01. Then the probabilities Pf and Pd in
the authentication procedure over a noisy wire-tap channel described in section 1.2,
for any deception strategy of the adversary, are upper bounded as:

Pf ≤
τ∑

i=∆+1

(
τ

i

)
pi

m(1− pm)τ−i (1)

Pd ≤
∆∑

i=0

(
d01

i

)
pi

w(1− pw)d01−i ·
∆−i∑
j=0

(
τ − d01

j

)
pi

m(1 − pm)τ−d01−j (2)
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where pm is the error probability in main channel, pw is the error probability in
the wire-tap channel, and ∆ is a threshold used in the authentication procedure.

Proof. We note that the length of authenticators for any message is equal to τ .
Relation (1) is obvious because its right side is exactly the probability of occur-
rence of more than ∆ disagreements between the strings of length τ assuming
that each bit disagreement is independent of any other and the probability of a
disagreement in every bit is equal to pm. In order to prove (2) we note firstly
that the best adversary’s substitution attack to decept a message m′, having
known a correct pair (m,w), is to find the codewords v and v′ in the AC V
corresponding to m and m′ and to compare them. If it happens that vi = v′i = 1
(where vi, v′i are the i-th bits of v and v′) then the best strategy is to select
as the i-th bit of the authenticator w′ the i-th bit in w, otherwise the i-th bit
of her received string Z. We observe that the disagreement probability among
authenticators bits in w and w′ is pm at those positions i where vi = v′i = 1
and is pw at those where vi = 0, v′i = 1. Since we assume pm < pw, in order
to decrease Pd it is necessary to increase the number of positions where vi = 0,
v′i = 1. This fact entails inequality (2) because d01 is the minimum number of
such positions and the probabilities of bits disagreements in authenticators w
and w′ are pm whenever vi = v′i = 1 and pw whenever vi = 0, v′i = 1. �
Unfortunately, the estimation of Pf and Pd by (1) and (2), for large values of τ ,
is a hard problem. Therefore we present below their upper Chernoff’s bounds.

Theorem 2. Under the conditions of Theorem 1:

Pf ≤
(

1− pm

pm

∆

τ −∆

)−∆ (
(1− pm)

(
1 +

∆

τ −∆

))τ

(3)

Pd ≤ e−ν∆ (pwe
ν + (1− pw))d01 (pme

ν + (1− pm))τ−d01 (4)

where ν = lnx and x is the root of the following quadratic equation

pmpw(τ −∆)x2 + [pmτ(1 − pw)− d01 − (pm + pw)] x+ pw − pmpw − 1 = 0 (5)

which provides a minimum at the right side of (4).

Proof. From the facts in the proof of Theorem 1, we have

Pf = Pr

(
τ∑

i=1

ξi > ∆

)
and Pd = Pr

(
d01∑
i=1

ηi +
τ−d01∑

i=1

ξi ≤ ∆

)
,

where H0 = (ηi)i, Ξ0 = (ξi)i are sequences of i.i.d. binary random variables with

Pr (ξi = 1) = pm , Pr (ξi = 0) = 1−pm , Pr (ηi = 1) = pw , Pr (ηi = 0) = 1−pw.

Applying Chernoff’s bounds [4] to the right side of (4) we get:

Pr

(
τ∑

i=1

ξi > ∆

)
≤ e−s∆ [E (Ξ1s)]

τ (6)
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where Ξ1s =
(
esξi
)
i
, and s is a real number satisfying

τ
E (Ξ2s)
E (Ξ1s)

= ∆ (7)

where Ξ2s =
(
ξie

sξi
)
i
. It is easy to see that

E (Ξ2s) = pme
s , E (Ξ1s) = pme

s + (1− pm) (8)

Substituting last relations into (6) and (7) we get, respectively

Pf ≤ e−s∆ [pme
s + (1 − pm)]τ , ∆ = τ

pme
s

pmes + (1− pm)
(9)

The solution of last equation is

s = ln
1− pm

pm

∆

τ −∆

and substituting this value into (9) gives the proof of (3). For (4), we use also
Chernoff’s bound

Pd ≤ e−s∆ [E (H1s)]
d01 [E (Ξ1s)]

τ−d01 (10)

where H1s = (esηi)i, and s is a real number satisfying

d01
E (H2s)
E (H1s)

+ (1− d01)
E (Ξ2s)
E (Ξ1s)

= ∆ (11)

where H2s = (ηie
sηi)i. It is easy to see that E (H2s) = pwe

s, E (H1s) = pwe
s +

(1−pw) Substituting last relations and (8) into (10) and (11) we get, respectively

Pd ≤ e−s∆ [pwe
s + (1− pw)]d01 [pme

s + (1− pm)]τ−d01 (12)

∆ = d01
pwe

s

pwes + (1− pw)
+ (τ − d01)

pme
s

pmes + (1− pm)

Let us denote es by x in last equation. Then after some simplifications we get
the quadratic equation (5) with respect to the new variable x. Substituting the
root of this equation into (12) we complete the theorem’s proof. �
Theorem 2 gives simpler (and simultaneously tight) relations for a performance
comparison of different AC’s. But eq’s. (3) and (4) are not convenient to estimate
the asymptotic behavior of the probabilities Pf and Pd as Pf = Pd. In order to
solve this problem we use the notion of Bhattacharyya distance.

Theorem 3. Under the condition of Theorem 1 the following upper bounds for
the probability Pe = 1

2 (Pf + Pd) holds as n→ +∞:

Pe ≤
1
2

exp

⎡⎣−1
4

d01(pm − pw)2(
2τ
d01
− 1
)
pm(1 − pm) + pw(1− pw)

⎤⎦ (13)
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Proof. Let us deal an authentication procedure as hypothesis testing. Let Λ =∑τ
i=1 ζi where ζi =

{
0 if ˜̃a = ã
1 otherwise

(we recall that B decides the authentication

to be correct if Λ ≤ Λ0, for a threshold Λ0, otherwise authentication is rejected).
If the adversary does not intervene at all (let us call it hypothesis H0) then

(ζi)i is a sequence of binary i.i.d. random values with Pr (ζi = 1) = pm and
Pr (ζi = 0) = 1 − pm. In the case in which the adversary uses an optimal sub-
stitution attack (let us call it hypothesis H1) we may assume that in the worst
case (for the verifier B) (ζi)i is also a sequence of binary i.i.d. random values
and ζi = ηi for i ≤ d01 and ζi = ξi for i > d01 and

Pr (ξi = 1) = pm , Pr (ξi = 0) = 1−pm , Pr (ηi = 1) = pw , Pr (ηi = 0) = 1−pw

(actually the variables ηi can take not necessarily the first d01 positions but
we assume this for simplicity and without any generality loss). Assuming, in
line with the De Moivre-Laplace Theorem [5], that Λ has asymptotically (as
n→ +∞) a normal (Gaussian) distribution for both hypothesis, we have

H0 ∼ N(e0, σ2
0) , H1 ∼ N(e1, σ2

1) (14)

where e0 = E(Λ|H0) = τpm, σ2
0 = Var (Λ|H0) = τpm(1 − pm), e1 = E(Λ|H1) =

d01pw +(τ−d01)pm and σ2
1 = Var (Λ|H1) = d01pw(1−pw)+(τ−d01)pm(1−pm).

According with [6], the Bhattacharyya distance (BD) is defined between two
probability distributions PH0 and PH1 over a space Ω as

DB (PH0 , PH1) = − ln
(∫

Ω

√
PH0(ω)PH1 (ω) dω

)
If PH0 , PH1 are one-dimensional Gaussian distributions, see (14), then [6],

DB (PH0 , PH1) =
1
4

(e0 − e1)2

σ2
0 + σ2

1
+

1
2

ln
(
σ2

0 + σ2
1

2σ0σ1

)
Substituting (14) into last equation, since 1

2 ln
(

σ2
0+σ2

1
2σ0σ1

)
≥ 0, we get:

DB (PH0 , PH1 ) ≥
1
4

d2
01(pm − pw)2

2τpm(1 − pm) + d01 (pw(1 − pw)− pm(1− pm))

=
1
4

d01(pm − pw)2(
2τ
d01
− 1
)
pm(1 − pm) + pw(1− pw)

(15)

Also [6], the Bayesian error probability Pe = 1
2 (Pf + Pd) under the condition of

optimal hypothesis testing is bounded as Pe ≤ 1
2e

−DB(PH0 ,PH1). This fact and
inequality (15) entail the theorem’s assertion. �
It is a very hard problem to find d01 for any constant weight AC V . But there
exists a very simple method [2] to design such a (2n0, k)-AC V with a known
d01 given a linear (n0, k)-code V ′ with ordinary minimum code distance d = d01.
Namely, let us change each symbol 1 by 10 and each 0 by 01 in every codeword
in V ′. The non-linear (2n0, k)-code V is a constant weight (τ = n0) code.
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3 Asymptotic Code Rate for AC’s

The statement to be proved would follow directly from Theorem 2 but since we
applied De Moivre-Laplace approximation in its proof and the Bayesian error
probability Pe for the efficiency of hypothesis testing, we give another proof.

Theorem 4. For any real numbers ε, δ ∈ [0, 1] there exist an integer n0 and a
(2n0, k)-AC V providing k

n0
< 1− ε, and Pf < δ, Pd < δ, for all n0 > n′

0.

Proof. In line with the verification algorithm in section 1.2 we get that the
probabilities of false alarm Pf and undetected deception Pd satisfy:

Pf = Pr (ρH(a, a′) > ∆) , Pd = Pr (ρ′H(a, a′) ≤ ∆) (16)

where ρ′H(a, a′) is the Hamming distance between the received authenticator
a and the authenticator a′ produced by verifier B under the assumption that
adversary E has intervened using optimal strategy (see section 1.2), ρH(a, a′) is
the analogous distance without the intervention of E, and ∆ is a given threshold.

Let us assume that the (2n0, k)-AC V has been constructed from a linear
(n0, k)-code V ′ with ordinary minimum code distance d = d01.

Let us normalize the Hamming distances and the threshold as ρH0 = 1
n0
ρH ,

ρ′H0 = 1
n0
ρ′H , ∆0 = 1

n0
∆. Then (16) is rewritten as

Pf = Pr (ρH0(a, a′) > ∆0) , Pd = Pr (ρ′H0(a, a
′) ≤ ∆0) (17)

The random differences among a and a′ of length n0 are Bernoulli trials with
parameter pm, assuming E does not intervene in the PDC, and pw in at least
d authenticator symbols and pm in (n0 − d) symbols if E tries to forge with an
optimal strategy. An application of the Chebishev’s bounds [5] to (17) gives

Pf ≤
Var (ρH0(a, a′))

[∆0 − E [ρH0(a, a′)]]
2 , Pd ≤

Var (ρ′H0(a, a
′))

[∆0 − E [ρ′H0(a, a′)]]
2 (18)

Clearly, since we are dealing with Bernoulli trials,

E [ρH0(a, a′)] = pm

E [ρ′H0(a, a
′)] =

d

n0
pw +

(
1− d

n0

)
pm

Var (ρH0(a, a′)) =
pm(1− pm)

n0

Var (ρ′H0(a, a
′)) =

1
n0

(
d

n0
pw(1− pw) +

(
1− d

n0

)
pm(1− pm)

)
Above relations with (18) give

Pf ≤
1
n0

pm

(∆0 − pm)2
(19)

Pd ≤
1
n0

d
n0
pw(1− pw) +

(
1− d

n0

)
pm(1− pm)(

∆0 − d
n0
pw(1− pw)−

(
1− d

n0

)
pm(1− pm)

)2 (20)
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Selecting (n0, k0)-codes with Varshamov-Gilberts bound [7], we get asymptoti-
cally

1−R ≤ g

(
d

n0

)
(21)

where
R =

k0

n0

is the rate of the error correction (n0, k0)-code used in authentication and

g : [0, 1]→ [0, 1] , p �→ −p ln p− (1 − p) ln(1− p)

is the entropy function. If we take R ≥ 1 − ε, then inequality (21) provides a
constant ratio d

n0
for any code length n0. Substituting d

n0
into (20) we can select

n0 enough large such that both Pf < δ, Pd < δ hold.
This finishes the proof of the theorem. �

We note that (19) and (20) are relevant to the asymptotic case but Chebyshev’s
inequality is very crude for Pe estimation within the finite length of the AC’s.
Therefore we exemplify AC performance evaluation using Bhattacharyya’s dis-
tance bound (13). In Fig. 2 we plot Pe versus the authenticated message length
k given different AC rates R′ = k/2n and wire-tap channel parameters pm, pw.
The semidistances d01 in (13) were calculated as d01 = d where d is the minimum
code distance of the (n, k)-code satisfying Varshamov-Gilbert bound.

pm = 0.1, pw = 0.2 pm = 0.1, pw = 0.1

pm = 0.1, pw = 0.05

Fig. 2. The error probability Pe versus message length k

Theorem 4 renders immediately the fact that for large enough message length
k the AC rate approaches 0.5 if AC has been constructed as described above.
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But the following interesting question arises: is it possible to design an AC with
a code rate larger than 0.5? In order to clarify this problem let us consider a
nonlinear constant weight code with a given minimum code distance d.

Lemma 1. Any nonlinear constant weight code C with minimum code distance
d has always the minimum semidistance d01 equal to d/2.

Proof. Consider any pair of distinct codewords c, c′ ∈ C. It is easy to see that

#{i| ci = 0&c′i = 1}+ #{i| ci = 1&c′i = 0} = d(c, c′),

and also that both relations

#{i| ci = 0&c′i = 1}+ #{i| ci = 1&c′i = 1} = τ

#{i| ci = 1&c′i = 0}+ #{i| ci = 1&c′i = 1} = τ

do hold where τ is the weight of the codewords at C, and d(c, c′) is the Hamming
distance between c and c′. From above relations, it follows

d01(c, c′) = #{i| ci = 0 & c′i = 1} = #{i| ci = 1 & c′i = 0} = d10(c, c′)

and d01(c, c′) = 1
2d(c, c

′). This relation means that whenever d01(c, c′) = d, for
distinct c, c′ ∈ C, then for the same words we will also have d01(c, c′) = d/2 and
this is indeed the minimum semidistance for the code C. �
By Johnson’s bound [8] the number A(n, d, τ) of codewords in any nonlinear
constant τ -weight code of length n with minimum code distance d satisfies:

A(n, d, τ) ≤
(

n

τ − d
2 + 1

)(
τ

τ − d
2 + 1

)−1

. (22)

Then the code rate of such code is upper bounded as

RC ≤
1
n

log2

[(
n

τ − d
2 + 1

)(
τ

τ − d
2 + 1

)−1
]

= R0. (23)

In order to prove that there do exist authentication codes with R > 0.5 and
Pf , Pd → 0 as n→ +∞ it is necessary to prove that the right side of (23) is at
least greater or equal then 0.5 for large enough n, some τ and d = αn, where
α > 0 is some constant, assuming that there exist codes subject to Johnson’s
bound. Let us approximate the involved binomial coefficients by the relation [9]√

π
2 G ≤

(
n

λn

)
≤ G where G = 1√

2πλnµ
λ−λnµ−µn, with µ = 1 − λ, and µ, λ �= 0.

Then, substituting these bounds into (23) we get asymptotically (as n → +∞)
after simple but tedious transformations

R0 ≈
√
π

2
g (x− a)− x g

(
1− a

x

)
(24)

where a = d
2n , x = τ

n and g is the entropy function.
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It can be easily shown by (24) that R0 is greater than 0.5 for small values of
the parameter a < 5×10−4. This means that if there exists a family of nonlinear
constant weight codes satisfying Johnson’s bound (22) then the code rate of the
AC’s designed with such codes can be greater than 0.5 in some cases. But the
existence of codes satisfying Johnson’s bound is still an open problem. We can
try, however, to increase the code rates of authentication codes refusing from the
authentication algorithm presented in section 1.2.

4 Authentication Based on Bit-Wise Method

The use of an AC with some given semidistance d01 as was proposed in [2] (see
also section 1.2.) appears to be not so natural. Let us try to consider another
technique of unconditionally secure authentication based on the bit-wise authen-
tication method.

In this setting a single message bit (either 0 or 1) is authenticated by one
authentication bit with the use of a two-bit key, as shown in Fig. 3, where the
key bits are labeling the graph’s edges.

Messages Keys Authenticators

0 • 01 ��
00

��

11

��

10

��

• 0

1 • 11 ��
10

��

11

��

01

��

• 1

Fig. 3. Graph of a single message bit authentication

In order to authenticate a message of length k, the legal users agree an error
correcting binary systematic linear (n, k)-code V with some chosen minimum
code distance d. After the initialization phase, user A encodes the message m
into the codeword v ∈ V , then A calculates the authenticator for each of the n
bits in this codeword, by the rule sketched in Fig. 3 using her string X as the key.
Next, A appends the authenticator to the codeword and sends this sequence to
user B over the noiseless channel. As soon as B receives an authenticated code-
word, he calculates his authenticator in the same manner as A did it but using
his own string Y and then he compares both received and found authenticators.
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If the Hamming distance between them is less or equal to some thresholds then
he accepts message as authentic, otherwise he rejects it as forged.

Let us denote by (vi, ai) the pair of bits produced by A on the i-th position of
the codeword and the authenticator corresponding to message m. The adversary
E generates some false message m′ and encodes it within the same code V . If
the adversary does not intervene at all during the information transmission then,
as can be seen in Fig. 3, the probability for B to get an incorrect authenticator
a′i �= ai is equal to pm. Then it is easy to see that the probability of false message
rejection coincides exactly with relation (1).

Having received a correct pair (vi, ai), the adversary always knows one of the
key bits used by A in the authentication procedure of the i-th bit. For him,
the probability to “guess” the unknown key bit is pw. If the false i-th bit v′i of
the codeword corresponding to the false message m′, which E aims to send to
B, coincides with vi, then the best strategy for E is to select a′i = ai due to
the assumption pm < pw. If v′i �= vi then the best strategy for E is to select
for the unknown key bit its corresponding in E’s string Z. In the last case the
probability for B to produce a different a′i than the bit sent to him by E is pw.
The best case from E’s point of view is the situation when the false codeword v′

differs from the original codeword v in the minimum number of positions. But
this number cannot be smaller than d under the condition of a shared code V .

This means that by allowing error occurrences in d authenticator positions
with probability pw and in τ − d positions with probability pm, then an upper
bound for the probability of successful deception is got. On the other hand,
the same condition arises in the case of using the ordinary AC considered in
section 2. Therefore the deception probability of the false message will coincide
exactly with relation (2). This means that the new construction based on bit-
wise methods gives the same performance evaluation as the use of an AC on the
base of the same error correcting code and changing in it 0 to 01 and 1 to 10.
Since this method does not show any advantages in comparison with the method
based on AC it is meaningless to consider it in deeper details.

We remark however that the construction considered in this section can be
generalized as follows: let us divide any block of length n in code V into sub-
blocks of length n1 > 1 and let us authenticate every such subblock using two
or more bit-key and an one-bit authenticator. In this setting we can diminish
the total length of codeword authenticator but performance evaluation of this
authentication scheme requires more knowledge about the used error correcting
code than just its minimum code distance.

5 Conclusion

We have analyzed the performance evaluation of keyless authentication based on
noisy channels. This procedure is very important in executing a key distribution
protocol (KDP) over noisy channels in presence of an active adversary. The
design and implementation of quantum computing as well as the design of super
fast multiprocessor conventional computers pose a serious threat of breaking
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some computationally secure cryptosystems, thus the use of KDP based on noisy
channels is very promising because it can provide with perfect one-time pad
unconditionally secure ciphers. In this paper we investigated the efficiency of the
known authentication codes [2] and propose a new authentication procedure.
Our main contribution is the formula proofs to calculate the probabilities of
false rejection of authenticated message and undetected deception of forgery by
adversary. The upper bounds based on Chernoff’s inequality and Bhattacharyya
distance have been proved also, allowing to calculate the probabilities quite
simply and for large length of AC especially important in practice.

Initially we showed that there exists a very simple construction of AC pro-
viding asymptotically a code rate close to 0.5. Moreover we have shown that
using nonlinear constant weight codes, the code rate greater than 0.5 is achieved
if there exist codes satisfying Johnson’s bounds. The design of such construc-
tive codes poses an interesting open problem as far as an investigation of the
maximum possible code rate of AC based on noisy channels.

Acknowledgements. Dr. Morales-Luna acknowledges Mexican Consejo Na-
cional de Ciencia y Tecnoloǵıa (Conacyt) for partial support and José Luis
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Avoiding Key Redistribution
in Key Assignment Schemes
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Abstract. A key assignment scheme is a model for enforcing an infor-
mation flow policy using cryptographic techniques. Such schemes have
been widely studied in recent years. Each security label is associated
with a symmetric encryption key: data objects are encrypted and autho-
rised users are supplied with the appropriate key(s). However, updates
to encryption keys pose a significant problem, as the new keys have to
be issued to all authorised users. In this paper, we propose three generic
approaches to key assignment schemes that remove the problem of key
redistribution following key updates. We analyse the overheads incurred
by these approaches and conclude that these overheads are negligible in
practical applications.

Keywords: key assignment schemes, key redistribution, hierarchical ac-
cess control.

1 Introduction

There are a number of situations in which access control is implemented using
cryptographic techniques. Such an approach is useful when the (protected) ob-
jects are: read often, by many users; written once, or rarely, by the owner of
the data; and transmitted over unprotected networks. Fu et al. [1] cite content
distribution networks, such as Akamai and BitTorrent, as examples where this
kind of technique might be useful.

A key assignment scheme is a form of cryptographic access control [2] that
seeks to implement a no-read-up information flow policy [3]. Users and objects
are assigned security labels; a user may have read access to an object if and
only if the user’s security label is at least as high as that of the object. Such a
policy can be implemented by associating a symmetric encryption key with each
security label and encrypting objects with the appropriate key. A user is given
(or can derive) the encryption key for each label less than or equal to the user’s
security label.

The data owner encrypts protected objects and supplies authorised users with
the appropriate keys. Hence, many users may have a copy of the same key,
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enabling each user to decrypt a number of different protected objects. One of
the main practical problems with key assignment schemes arises when a user’s
authorisation is revoked: each of the keys that this user has been given or can
derive is “compromised”. Hence it is necessary to create new encryption keys
and to securely redistribute the new keys to all remaining authorised users. (Of
course all objects also need to be re-encrypted.)

In this paper we examine the assumptions that have typically been made
when designing key assignment schemes. In particular, we are interested in the
practical implications of the design choices. We conclude that there are number of
ways in which we can design key assignment schemes so that key redistribution
is not required. Of course, one would expect such a scheme to have certain
disadvantages compared to existing schemes; there is always a trade-off. However,
we believe that in purely practical terms, the additional overheads incurred by
our schemes will be perfectly acceptable in practice, and are more than offset by
the fact that we no longer need to be concerned with key distribution.

The rest of this paper is organised as follows: Sect. 2 reviews existing KASs and
explores their shortcomings. We introduce our new schemes in Sect. 3 and analyse
their performance. Sect. 4 discusses the optimality of our preferred scheme and
we discuss proposed optimisations for existing KASs in Sect. 5. Finally, Sect. 6
concludes this work.

2 Preliminaries

A partially ordered set (or poset) is a pair (L,�), where � is a reflexive, anti-
symmetric, transitive binary relation on L. We may write x � y whenever y � x.
We say x covers y, denoted y � x, if y < x and there does not exist z ∈ L such
that y < z < x. L is a total order if for all x, y ∈ L, either x � y or y � x.
The Hasse diagram of a poset is the directed graph (L,�) [4]. A simple Hasse
diagram is shown in Fig. 1(a). We will write e to denote the cardinality of the
covering relation � (that is, the number of edges in the Hasse diagram of L),
and e∗ to denote the cardinality of the partial order relation �. In general e and
e∗ are O

(
l2
)
, where l is the cardinality of L, although in certain special cases

(as when L is a total order, for example) e is O (l) and e∗ is O
(
l2
)
.

Henceforth we adopt the following conventions: x, when used as input to
some (cryptographic) function, will denote a string identifying the security label
x; H denotes a hash function; E denotes a symmetric encryption algorithm; and
Ek(m) denotes the encryption of message m with key k.

Definition 1. An information flow policy is a tuple (L,�, U,O, λ), where:

– (L,�) is a (finite) partially ordered set of security labels;
– U is a set of users;
– O is a set of objects;
– λ : U ∪ O → L is a security function that associates users and objects with

security labels.
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Such policies were of particular interest in the mid-1970s, and formed part of the
famous Bell-LaPadula security model. The basic operation of the policy is that
a user u can read an object o if λ(u) � λ(o). Clearly, one way of implementing
such a policy is to encrypt an object with security label y ∈ L with a key k(y)
and provide all users with security label x � y with the key k(y). Henceforth, we
will represent an information flow policy (L,�, U,O, λ) as a pair (L,�) with the
tacit understanding that U , O and λ are given. We assume that the policy will
be implemented by encrypting objects and distributing keys to users, enabling
them to decrypt the objects to which they should have access.

2.1 Key Assignment Schemes

Most key assignment schemes seek to minimise the number of keys that need to
be distributed to users. This entails either making certain additional information
public or providing each user with additional secret information (or both). A
recent paper formalised the characteristic features of a key assignment scheme [2].
We summarise this approach below.

In general, a key assignment scheme (or scheme) for an information flow
policy (L,�) defines three algorithms, the first two being run by the scheme
administrator, the third by end users:

– makeKeys returns a labelled set of encryption keys (κ(x) : x ∈ L), which we
denote by κ(L);

– makePublicData returns some set of data Pub that is made public by the
scheme administrator;

– getKey takes x, y ∈ L, κ(x) and the public data, and returns κ(y) whenever
y � x.

The paper also identified five generic constructions for key assignment schemes
and compared these schemes according to the following criteria: amount of public
storage required, amount of private storage required, complexity of key deriva-
tion, and complexity of key updates. It was concluded that there were two generic
constructions that offered the best trade-offs with regard to these criteria. We
discuss these constructions in the next two sections. In both schemes a user u
has a single key κ(λ(u)).

IKE KAS. An iterative key encrypting (IKE) key assignment scheme (KAS)
uses public information to enable a user to iteratively derive keys for which he
is authorised. An IKE KAS has the following characteristic features.

– κ(x), x ∈ L, can be chosen at random from the key space;
– Public information PubI = {Eκ(x)(κ(y)) : y � x : x, y ∈ L};
– If y�x, a user with security label x can use κ(x) to obtain κ(y) by decrypting

the public information Eκ(x)(κ(y));
If y < x, there exists a path y = z0 � z1 · · ·� zn = x, n � 1, so a user with
security label x can successively derive keys κ(zn−1), . . . , κ(z0) = κ(y).
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x1

x2 x3

x4 x5 x6

(a) Edges used in an IKE KAS

x1

x2 x3

x4 x5 x6

(b) Edges used in a DKE KAS

Fig. 1. The directed graphs used in key assignment schemes; the transitive relationships
in the partially ordered set are denoted by broken lines

In all the KASs we consider in this paper, each datum of public information
corresponds to an edge in some graph. In the case of an IKE KAS, this graph
is (L,�). Hence, the public information storage requirements for a KAS is pro-
portional to the total number of edges in the graph, and we use the terms
synonymously. The edges used in an IKE KAS are illustrated in Fig. 1(a),

DKE KAS. A direct key encrypting (DKE) KAS uses public information to
enable a user to directly derive keys for which he is authorised. Such a scheme
is shown in Fig. 1(b), and has the following characteristic features.

– κ(x), x ∈ L can be chosen at random from the key space;
– Public information PubD = {Eκ(x)(κ(y)) : y < x : x, y ∈ L};
– If y < x, a user with security label x can use κ(x) to obtain κ(y) by decrypt-

ing the public information Eκ(x)(κ(y)).

The Atallah, Frikken and Blanton (AFB) KAS. The basic AFB scheme,
proposed by Atallah et al. [5], is an example of an IKE KAS, which is secure
against collusion, simple to set up and maintain, allows easy modifications to
the hierarchical structure, and is efficient in terms of its storage requirements
and key derivation time. In our notation, the AFB scheme can be represented
in the following way:

– keys are chosen at random from {0, 1}m, where m is a positive integer;
– Pub = {κ(y)−H(κ(x), y) : y � x : x, y ∈ L}, where H : {0, 1}∗ → {0, 1}m is

a hash function.

Note that the AFB scheme can be transformed into a DKE KAS by setting
Pub = {κ(y) − H(κ(x), y) : y � x : x, y ∈ L}, allowing a single step key
derivation.

2.2 Implementation Considerations

In order to meaningfully evaluate a KAS, it is necessary to consider its proposed
applications. Without reference to particular implementations, the expected
purpose of a KAS is to facilitate controlled access to data resources, such as
a cryptographically protected file system (CPFS) hosted on a remote file server.
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The use of cryptography to enforce access control policies is most applicable in
systems with distributed components whose security cannot be guaranteed and
in which the data must be transmitted over untrusted communication channels.1

Thus, we assume that (i) objects must be decrypted, and (ii) a publicly ac-
cessible resource server exists, hosting an information store of significant size.
With these points in mind, it becomes clear that certain properties of KASs are
less important than might be expected from a purely abstract analysis.

Key Derivation Time. The key derivation time is the average number of key
derivations the user is required to compute to obtain a particular key. In an
IKE KAS, this is the average path length in the Hasse diagram of the poset
(L,�), which is O (l) in general. Naively, this would seem to be a significant
disadvantage when compared to the DKE KAS, where key derivation always
requires a single step.

However, the process of deriving a key requires the use of only the most
efficient cryptographic primitives – typically one-way hash functions as in the
AFB scheme [5] – and involves decrypting keys of ∼ 256bits. Once the key is
obtained, slower symmetric primitives would be used to decrypt the actual data
objects, the size of which will be orders of magnitude larger than the encryption
keys. That is, the time taken to derive encryption keys, even in an IKE KAS, will
be negligible compared to the time taken to actually decrypt the data object.

Public Storage Requirements. The public storage requirements for a KAS
can be expressed as the number of edges required to be stored publicly: this is
proportional to e∗ in the case of a DKE KAS and proportional to e in the case
of an IKE KAS. The difference between e∗ and e is O

(
l2
)

in general, so this
could be regarded as an important factor in deciding whether to implement an
IKE KAS or DKE KAS.

However, the edges in question are the same size as the keys, ∼ 256bits. If we
take an extreme example, where L is a totally ordered set of 100 security levels,
the DKE KAS would require no more than ∼ 150kB of storage space (

(100
2

)
edges + 100 node labels), compared with the IKE KAS requirements of ∼ 3 kB.
The actual cost, in real terms, to the organisation of storing the extra 150kB of
information is negligible, particularly when compared with the overall storage
cost necessarily incurred by the target file system. Thus, the extra public storage
requirements incurred by a DKE KAS are effectively irrelevant to the analysis.

Complexity of Key Updates. Whether through key compromise, user revo-
cation or routine security precautions, it will be necessary to change some or
all of the keys at certain points in time. Updating the public information is a
relatively simple task, involving changes to a single public information store.

The complexity is essentially identical in an IKE KAS and a DKE KAS. In
order to revoke a single user with security level x, we must update κ(y) for all

1 Significant en/decryption overheads are inevitably incurred and are likely to be un-
acceptable in a localised system, in which all components are trusted and where
secure channels exist between each component.
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y � x (since we must assume that the user may have derived and cached any of
these keys). Hence, every user with a security label y � x will need to receive
the new key for y.

Note, that this is still a major improvement on a trivial key assignment scheme
(TKAS) [2], in which user u with security label x is given the set of keys {κ(y) :
y � x}. In a TKAS, revoking u means that any user v such that λ(v) � x or
λ(v) � x will require at least one new key. The advantage of having information
(edges) stored publicly (as in IKE and DKE KASs), is that each user has a single
key and only users v such that λ(v) � x require a new private key when κ(x) is
updated; the remainder of the key update process is achieved by updating the
public information.

2.3 Remaining Difficulties and Motivation

It is clear that there are advantages in using a KAS to control access to a CPFS
over traditional methods of access control in distributed file systems. Somewhat
ironically, less cryptographic overhead is incurred in a CPFS, since there is no
need to establish a secure channel (which requires the server to encrypt the data
and the client to decrypt) as opposed to a single decryption by the client when
using a CPFS. There is also no need for an online authorisation server (AS) and
(logically distinct) reference monitor, thus removing these potential bottlenecks
and shrinking the trusted computing base [6] to just the client machine.

Although issues such as key derivation time and public storage requirements are
largely irrelevant in practical terms, as we have explained in the previous sections,
the private key redistribution required following key updates is a serious consid-
eration in practical CPFS implementations. Although the scale of this problem is
reduced in schemes such as the AFB KAS, it is still far more complex (from the
scheme administrator’s point of view) than simply removing a particular user’s
authorisation from the AS (which has no effect on other legitimate users).

Secure key distribution has always been a fundamental issue in applied cryp-
tography. The development of asymmetric cryptographic techniques in the 1970s
was expected to remove or at least simplify this problem. However, it has become
apparent that the robust implementation of such techniques require a dedicated
infrastructure to guarantee the authenticity of public keys. Public key infrastruc-
tures are costly to implement and manage. Our motivation is therefore to design
a KAS with similar security and efficiency properties as existing schemes, but
one which obviates all private key redistribution.

3 Avoiding Key Redistribution in KASs

We assume that each user u ∈ U shares a symmetric key, k(u), with the scheme
administrator. This is a reasonable assumption, given that we must have a priori
knowledge of all the users in the system in order for them to be assigned to
security labels, and we would require some way of securely transmitting κ(λ(u))
to u for any KAS. In our scheme, we publish information tailored to allow each
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user to derive their permitted encryption keys. We can do this in several ways,
balancing key derivation time with the public storage requirements, analogous
to the tradeoff between the IKE and DKE KASs.

3.1 User-Based KASs

In all our schemes the set of encryption keys {κ(x) : x ∈ L} and the set of private
user keys {k(u) : u ∈ U} can be chosen at random from some appropriate key
space. The public information requirements of each scheme are described in the
following sections.

User-based Iterative Key Encrypting KAS (UIKE KAS). As the name
implies, this scheme is analogous to an IKE KAS as only strictly necessary edges
are included in the public information. The “graph” of the scheme includes an
edge from each user to their security level and the edges in the covering relation
on L.

– PubUI = {Ek(u)(κ(λ(u))) : u ∈ U} ∪ {Eκ(x)(κ(y)) : y � x : x, y ∈ L};
– The user first obtains κ(λ(u)) by decrypting Ek(u)(κ(λ(u))) ∈ PubUI with
k(u). Then,
• if y�λ(u), u can use κ(λ(u)) to obtain κ(y) by decrypting Eκ(λ(u))(κ(y))∈
PubUI;

• if y < λ(u), there exists a path y = z0 � z1 · · · � zn = λ(u), n � 1, so
that u can successively derive keys κ(zn−1), . . . , κ(z0) = κ(y).

In other words, the user uses their secret key to derive the key to their par-
ticular security level and then traverses the graph, decrypting the key for each
node in turn to obtain the desired key, as illustrated in Fig. 2(a).

x1

x2 x3

x4 x5 x6

(a) UIKE KAS

x1

x2 x3

x4 x5 x6

(b) UDKE KAS

x1

x2 x3

x4 x5 x6

(c) HKE KAS

Fig. 2. The directed graphs used in our user-based key assignment schemes: the tran-
sitive relationships in the partially ordered set are denoted by broken lines; the user
has security label x1

User-based Direct Key Encrypting KAS (UDKE KAS). This scheme is
analogous to a DKE KAS as the user can derive any (permitted) key in a single
step. The “graph” of the scheme comprises an edge from each user to each of
the security levels for which they are authorised.



134 H. Rowe and J. Crampton

– PubUD = {Ek(u)(κ(y)) : y � λ(u) : u ∈ U, y ∈ L};
– κ(y) is obtained by decrypting Ek(u)(κ(y)) ∈ PubUD using k(u).

This scheme allows the user to derive any (permitted) key in a single step,
as demonstrated in Fig. 2(b). Although this is a desirable feature, the size of
PubUD is potentially very large.

Hybrid Key Encrypting KAS (HKE KAS). This scheme is a compromise
between the previous two, balancing key derivation steps with public storage
requirements.

– PubH = {Ek(u)(κ(λ(u))) : u ∈ U} ∪ {Eκ(x)(κ(y)) : y < x : x, y ∈ L};
– The user first obtains κ(λ(u)) by decrypting Ek(u)(κ(λ(u))) ∈ PubH using
k(u). Having derived κ(λ(u)), he can then obtain any κ(y), y < λ(u), by
decrypting Eκ(λ(u))(κ(y)) ∈ PubH.

Informally, it takes one derivation to “hop” onto the graph of (L,�), from
where any (authorised) node can be reached in one step, as shown in Fig. 2(c).

3.2 Performance Evaluation

Key Derivation Time. The UDKE KAS retains the advantage of the DKE
KAS in that key derivation still requires a single computation. The UIKE KAS
adds one extra step to the original IKE KAS key derivation. The HKE KAS
generally takes two steps for any node (the exception being the key for the
user’s own security level), making the key derivation time approximately equal
to the derivation time for the UDKE KAS. When we compare like with like
(that is, UIKE KAS with IKE KAS, etc.) there is no significant difference in key
derivation time between the original and the new user-based schemes.

Public Storage Costs. There is no doubt that our schemes require more
public storage than the original schemes. If we have n users and l security levels,
and assume that n # l, then the UIKE KAS public storage is O (n+ e) =
O
(
n+ l2

)
= O (n), compared with the original IKE KAS storage of O (e). The

UDKE KAS fares even worse, requiring O (nl) edges, as opposed to O (e∗) =
O
(
l2
)

for the original DKE KAS, (a significant difference, given that n # l).
This increase in the size of PubUD, was the main motivation for the introduction
of the HKE KAS; the size of PubH is O (n+ e∗) = O (n).

If we consider an extreme example in which L is a total order containing
100 security levels with 1000 users assigned to each level, the number of edges
required for the HKE KAS is proportional to 1

299.100+ 100000 $ 105. If we use
256 bit keys/edges, this implies storage space requirements of ∼ 3MB. Whereas
this could be significant in some systems, if we consider that the point of our
entire scheme is to facilitate access to a remote file server, and would expect a
file system of a size vastly exceeding this 3MB cache to be stored, it becomes
clear why we believe the cost of storing PubH is negligible in practical terms. The
storage requirements for the UIKE KAS are proportional to 99 + 100000 $ 105,
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so there is almost no advantage to be gained by using the UIKE KAS. The public
storage requirements for UDKE KAS are proportional to 1000(100 + · · ·+ 1) $
5 × 106 edges, corresponding to storage requirements of ∼ 150MB. Even by
modern standards, storing this amount of public information, even on a dedicated
file server, may not be considered unimportant.

The increase in public storage for UDKE KAS may seem important when we
consider the relative sizes of the public information for each scheme: however, as we
have explained in Sect. 2.2, the relevance of this performance parameter is doubtful
given the applications to which we expect such schemes to be applied. Nevertheless,
although we believe that the size of PubUD is likely to be acceptable for most ap-
plications, we would generally recommend the HKE KAS, with its vastly reduced
storage requirements achieved at the cost of merely an extra key derivation step.

Administrative Complexity. Whether through key compromise, user revo-
cation or routine security measures, it will inevitably be necessary to update
the keys used to encrypt the data on the file server. Of these, the most complex
procedure from an administrative point of view is handling the revocation of a
user uR with a security label λ(uR) = x, say. We write ↑x, to denote the set
{y ∈ L : x � y}, we write ↓x, to denote the set {y ∈ L : x � y}, and we write
κ(↓x) to denote {κ(y) : y � x}. Since we must assume that uR has cached a
copy of all the keys to which he had been previously entitled, we must update
all κ(↓x) (and re-encrypt all affected objects).

In a standard IKE KAS or DKE KAS, this has the effect of changing all
the edges incident to any of the affected nodes, meaning changes to the public
information. Far more importantly, from a practical perspective, the private key
for any u ∈ U such that λ(u) � x has to be updated, thereby requiring key
redistribution.

If we now consider our schemes, the keys κ(↓x) still have to be updated,
the data objects re-encrypted and the relevant edges updated (with precisely
the same users affected) but, crucially, no key (re)distribution is required. The
administrator simply doesn’t update (or deletes) the entries Ek(uR)(κ(↓x)) ∈
PubUD in a UDKE KAS orEk(uR)(κ(x)) ∈ PubUI (respectively PubH) in a UIKE
KAS (HKE KAS) meaning that uR can no longer derive the new keys and the
revocation is accomplished.

3.3 Discussion

In all our schemes, the burden of administration has shifted from the difficult
task of redistributing new private keys to geographically distributed users in a
secure, confidential manner, to the relatively simple task of updating encrypted
information held on a public server. It is this crucial point that differentiates
our schemes from all previous KASs in the literature. Although our schemes are
based on existing generic constructions, and our ideas can probably be used to
improve other schemes, we feel that our contribution is to change the way KASs
are generally thought about by researchers and system designers; we anticipate
that our ideas are likely to have the most impact on the implementation of KASs.
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The only remaining concern is how to ensure that at least the authorised
users have the necessary public information when they need it. We feel that a
pull model, whereby users retrieve their data (edges) as and when they require,
is particularly suitable, bearing in mind the system under consideration (users
requesting objects), rather than a push model, where the central administrator
seeks to actively broadcast any data changes to users who may not be online. In
fact, the edges could be stored on the resource server itself, with the file system
calls modified to return the object and the necessary edge(s), reducing overheads
still further.

4 Is HKE KAS the Best Two-Step Scheme?

A number of attempts have been made to find a trade-off between the number
of key derivation steps required and the amount of public storage, see [5] for
example. The general approach is to construct a new graph G = (L,R), where
R ⊆ L × L and for all x, y ∈ L such that y � x, there is a path no longer than
p (for some fixed integer p) between x and y in G. Then the public information
is defined to be {Eκ(x)(κ(y)) : (x, y) ∈ R}.

In this section we consider applying this kind of approach to our user-based
KASs. In particular, we investigate whether there exists a two-step KAS with
smaller public storage requirements than the HKE KAS. In the HKE KAS, the
amount of public storage is proportional to the sum of the “internal” edges
arising from the DKE KAS used for L and the “external” edges arising from the
edges between each user and his security level. As we have already noted, the
amount of public storage is therefore O

(
l2 + n

)
, where n = |U |.

What we now try to do is use analogous methods to reduce the number of
internal edges at the expense of a small increase in the number of external edges.
Suppose, then, that we can partition (L,�) into L1, . . . , Lm such that each Li

has a unique maximal element (with respect to the original partial order). We
call these maximal elements anchor points, and denote the set of anchor points
by A ⊆ L.

We can define a DKE KAS for each sub-poset (Li,�) with public informa-
tion Pubi. Finally, we can construct a user-centric KEKAS with the following
properties:

– the public information contains
⋃m

i=1 Pubi;
– for each user u there is an element of public information for the pair (u, λ(u))

and for every pair (u, a) such that a ∈ A and a � λ(u).

Then a user can get to any anchor point ai � λ(u) in one hop and to any other
node in Li in a further hop. Hence, a user can derive the key for any y � λ(u)
in two steps. Writing li for |Li|, the public storage required for each scheme is

O
(

m∑
i=1

l2i +
∑
u∈U

|↓(λ(u)) ∩A|
)

.
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A formal comparison of the storage requirements for the standard HKE KAS and
the modified scheme proposed above is beyond the scope of this paper. However,
the following provides some justification for believing that in most practical
instances, the modified scheme is unlikely to better than the HKE KAS.

In the general case, we note that the reduction in the number of internal edges
is fixed (assuming that L and L1, . . . , Lm are fixed). In any “optimised” two-step
solution, adding a single user must add more than one external edge (on average)
in order to allow the user to reach every relevant anchor point. While the HKE
KAS may well have more internal edges for a small number of users, adding a
user only ever requires a single external edge to be added. It is clear then, that in
a realistic application, where users will significantly outnumber security levels,
so that the total number of edges in the scheme is dominated by the number of
external edges, the HKE KAS will be an optimal solution. We include a simple
example in Appendix A to demonstrate this.

5 Related work

5.1 Existing KASs

We refer the interested reader to a recent paper for a comprehensive survey of
existing KASs in the literature [2], and note that none of these schemes eliminate
private key redistribution. Atallah et al. touch upon the idea of eliminating key
redistribution [5, Section 5], noting that this could be achieved in principle, but
choose to focus their research entirely on other extensions such as trying to
optimise the number of edges required (which we discuss in the next section).

5.2 Optimised KASs

In our evaluation of KASs (Sect. 2.2) we only considered the DKE KAS and
IKE KAS. We can view these schemes as representing the extreme points on a
continuum of possible key encrypting KASs (KEKASs). The IKE KAS represents
the KEKAS with the minimum possible storage requirements, at the expense
of maximising the average key derivation time. The DKE KAS represents the
other end of the scale, with a single-step key derivation achieved at the expense
of maximising the public storage requirements.

Recent work by Atallah et al. [7] has developed methods to construct optimal
p-step KEKASs (as described briefly in Sect. 4). Whilst their work is intriguing
from an abstract mathematical point of view, we believe it has only limited
applicability in terms of finding an “optimal” KEKAS (OKE KAS).

In order to develop an OKE KAS, it is first necessary to find a meaningful
way to compare the various possibilities. Unfortunately, it is not at all clear how
to compare, say, a four-step solution with its particular storage requirements to,
say, a three-step solution which has greater storage needs.

More importantly, as we have explained, the trade-off between key derivation
time and public storage is not very important in practical terms. In any given
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organisation, the actual gains made by using an OKE KAS over either a IKE
KAS or a DKE KAS, will be negligible, since neither of these factors are likely
to be of any practical significance.

Finally, in almost all situations, system designers are guided by the princi-
ple of trying to maximise the runtime performance. Slightly counter-intuitively,
the greater the number of edges the organisation stores publicly, the smaller
the number of edges each user has to retrieve. The overhead is shifted from a
runtime performance hit to an off-line computation by the administrator. Thus,
even if a suitable objective function could be devised and a cost-benefit analysis
conducted, the DKE KAS is still overwhelmingly likely to be selected as the best
overall option, as it requires the user to download the minimum possible number
of edges and perform just a single computation at runtime in order to obtain
any (permitted) key.

In the previous section, we introduced our new, user-based schemes and
pointed out that we favoured the two-step HKE KAS over the single-step UDKE
KAS, which would clearly be faster at runtime. The reason for this discrepancy
is straightforward. The public storage requirements in the user-based schemes
scale with n = |U |, as opposed to the original schemes which scale with l = |L|.
Since we expect that in most organisations n# l, the size of PubUD can become
sufficiently large for it to be considered non-trivial (as explained in Sect. 3.2).
Once this happens, it is necessary to consider ways of reducing the requirements;
the HKE KAS provides a natural way to construct a two-step solution which
significantly reduces the public storage requirements.

6 Conclusion and Future Research

We have introduced three new KASs, the UIKE KAS, the UDKE KAS and the
HKE KAS. In this work, we have developed a unique, pragmatic approach to
evaluating KASs, ignoring the negligible public storage requirements and key
derivation times, focusing instead on the issue of private key updates and the
resulting requirement for key redistribution. We believe this single issue to be
overwhelmingly the most important factor in any KAS analysis.

Our schemes address this point by eliminating all private key updates, trans-
forming the problem of key redistribution following key updates into a simple
data update process. Moreover, our ideas can be implemented on top of any
existing provably secure KAS, thus automatically inheriting the same security
guarantees.

There is an interesting parallel we can draw between our ideas and the con-
cept of a CPFS. In all remote file systems it is necessary to protect sensitive
data by encrypting it, at least for transmission purposes. The CPFS approach
merges the cryptography layer into the file system itself. Nothing is fundamen-
tally changed by moving the protection mechanism, except that our approach to
security shifts completely into the area of KASs, making sure that only autho-
rised users have the necessary keys. By using this approach, we need no longer
worry about the consequences of the server being compromised or the security



Avoiding Key Redistribution in Key Assignment Schemes 139

of the communication channel between the client and the server, since the trusted
computing base now comprises only the client machine.

In existing KASs, a secure, private key redistribution mechanism is assumed.
This would almost certainly be in the form of a shared secret between each user
and the scheme administrator, who would then send the new key to the user
encrypted with the shared secret to maintain confidentiality.2 Our contribution
is to merge this key distribution mechanism into the KAS itself, by publishing
the encrypted keys along with the rest of the public KAS information. Architec-
turally, little has fundamentally changed, but by using this approach, we reduce
the overall complexity of the scheme, since all administrative tasks can be han-
dled with simple updates to a public server.

In future work, we would like to implement our schemes, investigating whether
our assumptions about performance characteristics are realistic. It is also worth
investigating whether the HKE KAS is indeed an optimal two-step solution in
realistic applications and the conditions under which it becomes optimal for
arbitrary hierarchies and user distributions.

Another significant obstacle barring the widespread implementation of CPFSs,
is the problem of mass re-encryption of data following updates to the encryption
keys.Certainapproacheshavebeenproposed, includingdelaying the re-encryption,
known as the lazy update approach [8]. In futureworkwewould like to considerways
to avoid this problem entirely.
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Appendix A: A Simple Example

Let us now apply the analysis of Sect. 4 to a simple example, in which L is a total
order and equal numbers of users are assigned to each security label. Then we can
divide L into k sub-chains of length m = l/k. The DKE KAS for each sub-chain
requires 1

2m(m−1) edges. Hence there are k
2m(m−1) = 1

2 l(m−1) internal edges
in the new scheme. The number of internal edges for the standard HKE KAS is
1
2 l(l−1). Hence the number of internal edges is reduced by 1

2 l (l− 1− (m− 1)) =
1
2 l(l−m).

We now consider what extra external edges are needed in the new scheme.
Users assigned to a label in the highest subchain have k edges (one for their
security label and k − 1 for each of the other anchor points). Similarly, users
assigned to a label in the next highest subchain have k − 1 edges. Hence, in
total, we require n edges to connect each user to his respective security level and

n

l

k−1∑
i=1

i =
n

2l
k(k − 1) =

n

2l
l

m

(
l

m
− 1
)

=
n

m2 (l −m)

additional edges to connect users to relevant anchor points. The proposed scheme
improves on the basic HKE KAS only if the number of additional external edges
is less than the reduction in internal edges. Hence, we need to consider whether
n

m2 (l − m) < 1
2 l(l − m). We may assume that l > m (otherwise k = 1 and

the modified scheme is equivalent to the original HKE KAS). Hence, we have
that the modified scheme offers an improvement if lm2 > n. For most practical
schemes, n # l and this inequality is unlikely to hold. Now, the largest m can
be is l/2, so there is only an improvement if n < l3/4. If l = 10, for example, we
only require 250 users for the optimal choice to be k = 1 (which represents the
basic HKE KAS).
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Abstract. Fern is an updatable cryptographically authenticated dictio-
nary developed to propagate identification and authorization information
within distributed systems. Fern incrementally distributes components of
its dictionary as required to satisfy client requests and thus is suitable
for deployments where clients are likely to require only a small fraction
of a dictionary’s contents and connectivity may be limited.

When dictionary components must be obtained remotely, the latency
of lookup and validation operations is dominated by communication time.
This latency can be reduced with locality-sensitive caching of dictionary
components. Fern dictionary’s components are suitable for caching and
distribution via autonomic scalable locality-aware Content Distribution
Networks (CDNs) and therefore can provide these properties without re-
quiring the provisioning of a dedicated distribution infrastructure. Com-
petitive approaches require either the sequential transfer of two-to-three
times more vertices or the replacement of a greater number of already
distributed vertices when updates occur.

Keywords: binary trie, authenticated dictionary, distributed systems,
content distribution network, Merkle tree.

1 Introduction

The maintenance of consistency between Certificate Authorities (CAs) and access
controllers has been a persistent problem in distributed systems. A variety of ap-
proaches have been implemented including online validation, limitation of certifi-
cate lifetimes, and dissemination of certificate revocation lists. These approaches
have complementary advantages, and hybrid implementations are common. For
example, by issuing certificates with limited lifetimes, a CA can limit the number
of unexpired certificates that access controllers must reject. This certificate revo-
cation list (CRL) can be disseminated directly to all access controllers, or to a set
of trusted proxies who provide online validation services. The dissemination of
complete CRLs can impose onerous communication, storage, and computational
costs to access controllers that only reference a small subset of CA’s certificates.
Similarly, the provisioning of trusted proxies increases the communication and
computational cost, and possibly the latency of authorization decisions. Further-
more the determination of whether an online software system has security prop-
erties suitable for secure online transactions is notoriously difficult.
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Distributed updatable online authenticated dictionaries based on skiplists[4,1]
and self-balancing trees[9] have recently been proposed as a source of authoriza-
tion information in distributed systems. These structures disseminate name-to-
value mappings that can provide evidence of identity (i.e., that some public key
identity KA is an Id associated with a person named “Alice”) or that a set of cer-
tificates has been revoked. Composed cryptographic hashes are embedded within
these dictionaries, permitting their distribution via untrusted proxies to access
controllers who can efficiently validate mappings or determine their absence. The
integrity of any search path within these data structure can be verified with a
single public-key root certificate. Furthermore, these partial copies of the dictio-
nary’s structure can be cached and therefore utilized to answer future queries
that share common paths. These properties can be exploited by proxies and
security-sensitive clients that incrementally obtain and validate portions of their
search structure as required to answer queries.

The latency of a search within a distributed authenticated dictionary is dom-
inated by the latency of obtaining vertices in a search path. So, it is useful to
minimize these necessarily serialized operations. Path length in a search tree
corresponds to leaf depth. Expected leaf depth is UlogbN where b is the tree’s
branching factor. U (typically below 2) accounts for the structure’s expected
lack of balance.

Modifications to mappings stored within an authenticated dictionary typi-
cally cause changes to the dictionary’s search structures. Since components of
an authenticated dictionary may be cached, it is desirable if these updates are
limited to the ancestors of the changed components and thus require only a few
updates. Thus, algorithms that rely on structural modification to achieve good
performance (e.g. self-balancing trees) reduce this cacheability. Updates to a
randomized skiplist do not result in structural changes unrelated to the updated
vertex’s original search path, but the expected number of objects in a skiplist’s
search path is 3log2N for a skiplist containing N items.

Fern utilizes a randomized search structure with empirical path lengths of
1.1 log2 n. Given the high latency of inter-host communication in distributed
systems, the constants do matter, and the number of vertices that must be trans-
ferred to lookup a value stored within Fern is comparable to the most aggressive
algorithms based upon self-balancing trees and far lower than skip-lists. Like
skiplists, but unlike balanced trees, Fern does not require restructuring and thus
is also well suited for distributed caching.

2 Fern

As illustrated on the left side of Fig. 1, Fern’s internal structure is a binary
Merkle-trie with path compression. Like the authenticated authorization frame-
work suggested by Tamassia et. al. in [9], vertices from Fern’s Merkle-trie are
suitable for distribution by peer-to-peer (P2P) Content Distribution Networks
(CDNs) to clients and access controllers who construct, maintain, and validate
search paths that serve as evidence of authorizations upon which they depend.
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Following the notation of Martel et. al.[5], we refer to validated search paths as
verification objects (VO).

ID:value mappings are stored in leaf vertices whose search key is equal to its
ID’s SHA-1 hash (when used to disseminate set membership, the value field can
be empty.) Following the model of a Merkle-tree[7], internal nodes also contain
SHA-1 hashes of each immediate descendant (hashes are not indicated in Figure
1). Incorporation of hashes within all internal verices permits access controllers
to to validate the integrity of individual search paths without obtaining the
entire trie. The current root and its hash is stored in a root certificate signed
with the originator’s public key.

A Fern VO for a particular ID contains a root certificate and the search path
containing its mapping. If the ID is not stored within Fern, it contains a search
path that demonstrates that the referenced ID is not in the trie.

Fern publishes root certificates and vertices using the CoralCDN scalable,
self-organizing, and locality-aware content distribution network. This helps to
minimize network congestion that arises from distributing vertices and permits
a large number of access controllers to be served by a single server with modest
computational and network resources.

Fig. 1. On left: Fern trie for 4-bit keys containing leaves (0010, 0101, 1110, and 1111).
On right: Number of nodes that need to be updated when the number of watched data
entries is smaller than the number of updated data entries (see Section 3).

In contrast to Fern, which uses 160-bit SHA-1 hashes, the trie depicted in
Figure 1 only uses four-bit search keys. ID:value mappings are stored in leaf
vertices with search-keys corresponding to the ID’s hash digest. In this figure,
the name “Bob” (mapped to f ) is depicted as having a hash equal to 1111.

Routing decisions within this trie are made one bit at a time, in decreasing
order of significance. Each internal vertex is labeled with the search prefix cor-
responding to the common prefix shared by all its descendants. Vertices within
tries that have no branching are collapsed as is illustrated by the absence of
vertices corresponding to the prefixes 1, 10, 11, and 110.
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A client with interest in an ID’s mapping stored within Fern obtains the set
of trie nodes that comprise the path from the root to the desired leaf. Monte
Carlo experiments indicate that leaves within Fern’s binary trie are generally at
a depth of 1.1 log2 n where n is the number of mappings stored within the trie,
equal to the most agressive self-balancing algorithms.

Each internal vertex of a Fern authorization trie contains node identifiers
(NIDs) of its children. NIDs are used as a locator by clients requesting par-
ticular nodes. Like SFS-RO’s[3] self-certifying pathnames, Fern’s NIDs include
cryptographic hashes of the referenced node’s contents and are also used to verify
the integrity of a nodes obtained from insecure channels.

A Fern CA periodically publishes a signed, time-limited root certificate. Using
an asymmetric cipher Fern clients and access controllers know the CA’s public-
key identity and use it to determine the integrity of root certificates.

A VO for a referenced identifier, I, thus contains all Fern-nodes between the
Fern-root and I. A full certification path can be included within the payload
of a single message transmitted from one Fern client to another. Alternatively,
since each internal node of a Fern-trie contains the NIDs of immediate children
serving as locators, a Fern client can obtain a certification path for I by obtaining
intermediate nodes as it traverses the path from the root toward the leaf node
containing I. A search-path that comprises a complete VO can be transmitted
directly between clients, or instead be constructed by a client that searches for
the node corresponding to the ID’s hash.

3 Analysis: Number of Refresh Queries

Fern search-tries are well balanced due to their use of a good hash function (e.g.
SHA-1) to evenly distribute a set of elements over an ordered range which is
large compared to the number of elements being distributed.

The hash value of a Merkle-tries’s leaf and all of its ancestors changes whenever
the leaf’s contents are updated. In this section, we consider the number of vertices
that must be obtained by a client who is monitoring mappings stored within a set
ofw = |W | watched leaves within a dictionary storing a total of nmappings in the
event that u = |U | leaves are updated. Let c = |U∩W | be the number of vertices in
W whose mappings have changed. Assume that w ≤ u (this should be commonly
the case.) Monte Carlo experiments support these results, especially asw, u and n
become large. A technical report version of this paper [2] provides a more formal
analysis and also examines the case where w > u.

As illustrated on the left side of Figure 1, our analysis divides the trie into
three regions. The upper region, which extends to depth �log2 w� has approx-
imately w vertices at its (approximate) lower edge. We assume that the hash
function uniformly distributes keys, that most of these (approximately) w ver-
tices are ancestors to the w leaves mapping members of W . Since u ≥ w,
it is likely that most of these (approximately) w vertices members are also
ancestors of the members of |U |. Thus our client is likely to require updates
for all (approximately) 2w − 1 vertices in the upper region.
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The middle region of this trie extends to depth �log2 u�. Like our analysis
of the upper region, it is likely that most vertices above depth log2u contain
nodes that are ancestors of the u updated leaves and most vertices in this region
are likely to have been updated. However, only w paths of length �log2(u/w)�
through this middle region are likely to be ancestors of vertices being watched,
and only w�log2(u/w)� of these vertices are likely to be needed by the client.

The lower region extends down from (approximately) level �log2 u� and has
approximately �log(n/u)� levels. However, the approximately c�log2(n/u)� ver-
tices along the c paths to leaves that are both watched and updated will be ob-
tained by clients. Thus we expect that approximately (2w−1)+w�log2(u/w)�+
c�log2(n/u)� nodes that will require updating. In practice, the shift from one
section to the next may not occur exactly at the same level on every path. The
analysis for w > u is symmetric, so the same result holds with a switch between
w and u.

We have begun evaluation of Fern upon the Planetlab[8] global distributed
testbed. The plot on the left side of Figure 2 conducted upon hundreds of hosts
distributed globally provides empirical evidence supporting our analytical model
of refresh queries. In this experiment, k = 2058,w = 60, and u = 200. Each host’s
set of watched mappings was chosen with a distribution corresponding to the
routing table of a Kademlia[6] DHT. Plots indicate the average number of Fern
vertices obtained for clients distributed globally upon Planetlab. As predicted by
the analytical model, refresh queries tend to terminate around depths log2 u = 7
and logn = 11. In these experiments, the average number of vertices obtained by
clients from CoralCDN is 154. Our analytical approximation prediction is 146.
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Fig. 2. Measured results from Executions on Planetlab: Left side: Average Depth of
Refresh Queries. Right side: Cumulative distribution of refresh query times.

The plot on the right side of Figure 2 depicts the cumulative distribution
of update latencies for watched mappings in an experiment with 324 hosts
distributed in 37 countries. Fern vertices were disseminated using CoralCDN.
In this experiment n = 2048 and each host watched w = 37 mappings chosen
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with mapping corresponding to its view of a Kademlia routing table. Roots were
published at five minute intervals, and thirty-two mappings were changed during
each interval. Each plot depicts the cumulative distribution of times required for
a fraction of the hosts to obtain a fraction of the updated mappings. Note that
0.9 (90%) of the hosts obtained 90% of their 37 watched mappings in ∼ 10s, and
0.95 of the hosts obtained all of their 37 watched mappings in ∼ 30s.

4 Conclusion

We have described a data structure for updatable authenticated dictionary with
low maintenance and with better latency than current techniques.
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Abstract. Electronic messages authentication issue is of significant importance 
for computer systems. A number of public key cryptosystems based on the 
composite modulus (n=pq, where p and q are large primes) has been proposed 
to provide information authentication and only for one of them (that has been 
proposed by M. Rabin) security has been proved formally. In this paper we 
generalize the M. Rabin’s public key encryption and digital signature schemes 
and present formal proof of the security of the class of public key cryptosystems 
based on difficulty of the factorization problem. 

Keywords: Information authentication, provably secure cryptosystems, digital 
signature, public encryption, public key cryptosystem. 

1   Introduction 

Systems designed for information authentication in computer networks and 
information systems are based on public key cryptosystems. The RSA public key 
cryptosystem introduced by R.L. Rivest, A. Shamir, and L.M Adleman in 1978 [1] 
has become the first world wide used digital signature and public-key encryption 
system. In RSA the public key is represented by pair of numbers (n, e), where n = pq
is the product of two randomly chosen distinct prime numbers and e is a random 
number that is relatively prime with Euler phi function ϕ(n) = (p − 1)(q − 1). The 
triple (p, q, d), where d = e−1 mod ϕ(n), is secret. Data ciphering with RSA is 
described as follows: C = M

e
mod n (public-key encryption) and M = C

d
mod n

(decryption), where M < n is a plaintext and C is ciphertext. RSA signature (S)
generation and verification are performed as follows: S = M

d
mod n and   

M = S
e

mod n, correspondingly. 
Usually the signed documents are comparatively long. In such cases instead to sign 

a document M we sign the hash function value H = FH(M) corresponding to M:
S = H

d
mod n. The RSA security is based on difficulty of factoring modulus n, which 

depends on the structure of primes p and q. At present the requirements to the primes 
p and q are well clarified [2, 3]. However there exists a fundamental problem 
concerning the RSA and many other public key cryptosystems, which consists in 
strict formal proof of their security.  
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Among different cryptosystems [1,4,5] based on difficulty of factorization problem 
there is known only one of them that is provably secure. It has been proposed by 
M. Rabin [4]. Data ciphering with M. Rabin’s cryptosystems is described as follows:  

C = M
2

mod n   (public-key encryption)   and   M = C mod n  (decryption), 

where M ∈{M1, M2, M3, M4} is a plaintext, M1, M2, M3, M4 are four different values of 
the square root modulo n, C is the ciphertext. Peculiarity of M. Rabin’s public key 

cryptosystem is the four different variants of the C  value from which the correct 
plaintext should be selected. Procedures of M. Rabin’s signature (S) generation and 
verification are performed, correspondingly, as decryption and encryption: 

S = M mod n   (generation)   and   M = S
2

mod n  (verification). 

In this paper we generalize the M. Rabin’s cryptosystem and show existence of a 
class of provably secure cryptosystems based on difficulty of factorizing the 
composite modulus. 

This work is organized as follows: in Section 2 a class of digital signature scheme 
based on difficulty of factorization problem is described. In such cryptosystems the 
public encryption and digital signature verification consists in exponentiation of the 
message M to the kth power modulo n, where k is a natural number such that k divides 
ϕ(n). In Section 3 we prove formally that the proposed cryptosystems are as secure as 
difficulty of the modulus factorization. In Section 4 we consider the most 
computationally efficient system that relates to the case k = 3. Finally, conclusions are 
presented in Section 5. 

2    Class of Public Key Cryptosystems 

In the considered class of the public key cryptosystems we use a modulus of the form 
n = pq, where p and q are strong primes that are easy to be generated using Gordon’s 
algorithm [2,6]. The primes p and q are supposed to be of large size 
|p| ≈ |q| ≥ 512 bits, where |W| denotes the binary representation length of the integer 
W. Gordon’s algorithm allows to generate strong primes p and q for which the 
numbers p − 1 and q − 1 contain different large prime devisors γ′ and γ′′, respectively 
(for example, primes γ′ and γ′′ that have length from 160 to 384 bits). The public key 
is the number n. The secret is the (p, q) pair of numbers.  

In this section we consider the Rabin-like cryptosystems in which the data 
ciphering is performed as follows:  

C = M
k

mod n   (public-key encryption)   and   M = k C mod n  (decryption), 

where M < n, M ∈{M1, M2, …, Mz} is a plaintext, M1, M2, , …, Mz are different values 
of the kth degree root modulo n, C is the ciphertext, and k divides at least one of the 
two values p − 1 and q − 1. Thus, we should select one correct value of the plaintext 
from z different variants. The signature (S) generation and verification are performed, 
correspondingly, as decryption and encryption: 
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S = k M mod n   (generation)   and   M = S
k

mod n  (verification). 

In order to provide uniqueness of the decryption procedure result it is possible to 
use the redundancy of the plaintext or to append a checksum G=F(M ′), where F is a 
specified function, to the message M′. In the last case the encrypted plaintext has the 
structure M = M′ ||G, where || denotes the concatenation operation. The last method is 
also efficient, while generating the digital signature. In practical applications it is 

supposed that the signature should be calculated as || modkS M G n′=  and 

signature verification should contain the following two steps: i) calculate 
M′ ||G = S

k
mod n and ii) check the equality G=F(M ′). We also should take into 

account that in general case the M′ ||G value is not residue of the kth degree modulo n.
To overcome this problem it is possible to use different approaches. For example, a 
random 16-bit number R can be concatenated to the M′ ||G value. With probability 1/z
the M′ ||G||R value is residue of the kth degree modulo n. On the average, trying z
different values R we will have possibility to generate a signature 

|| || modkS M G R n′= corresponding to the message M′ . (If the M′ message length 

is large, then we will sign the hash function value H′ = FH(M′): || modkS H R n′= .)

Security of the considered class of cryptosystems is based on secrecy of the primes 
p and q. Signature generation and decryption procedures can be easily performed 
using the values p and q. However for a person that does not know the secret correct 
decryption or signature formation are computationally infeasible procedures.  

Suppose t = gcd(p − 1, k) and u = gcd(q − 1, k). In this case we have t different 
values of the kth degree root modulo p: {M(p)

1, M(p)
2, …, M(p)

t} and u different values 
of the kth degree root modulo q: {M(q)

1, M(q)
2, …, M(q)

u}. Each pair (M(p)
i, M(q)

j), where 
i ∈{1, 2, …, t} and j ∈{1, 2, …, u}, defines a value of the kth degree root modulo n
which can be calculated using the Chinese Remainder Theorem, i. e., in the 
considered particular case, using the following formula: 

( ) ( )1 ( ) 1 ( )mod mod modp q
s i jM q q p M p p q M n− −= + .                     (1) 

Thus, in general case we have z = tu different values of the kth degree root modulo n:
{M1, M2, …, Mz}. There are known computationally efficient algorithms to calculate 
roots modulo primes. Sufficiently efficient procedures correspond to the case  

p ≡ (t 2 − t + 1) mod t 2   and   q ≡ (u 2 − u + 1) mod u 2.

The most efficient procedures of finding the kth degree root modulo p and modulo q
correspond to the case t = u = k (i. e. we have k | p − 1 and k | q − 1) and   

p ≡ q ≡ (k2 − k + 1) mod k2.

If we generate and use the secret primes that relates to the last case, then we will have 
possibility to find the kth degree root modulo p and modulo q using, respectively, the 
formulas: 

2

1

mod
p k

k ka a p
+ −

=   and  
2

1

mod
q k

k ka a q
+ −

= ,
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where a is the kth degree residue modulo p and modulo q. If t = gcd(k, p − 1) = 1 or 
u = gcd(k, q − 1) = 1, then we can calculate integer x = k − 1 mod p − 1 and 

modxk a a p=  or integer x′ = k − 1 mod q − 1 and modxk a a q′= , respectively. 

3     Provable Security  

Security of all public key cryptosystems described in Section 2 is based on difficulty 
of factorizing the modulus n. Provable security of this class of encryption and 
authentication systems is defined by the following theorem: 

Theorem 1. Security of the cryptosystems included in the class described in Section 2 
is polynomially equivalent to difficulty of factorizing modulus n.

The theorem states that breaking any of the considered cryptosystems is polynomially 
as hard as difficulty of factorizing modulus. To prove Theorem 1 means to show that 
i) the factorization of the modulus n provides possibility to decipher cryptograms and 
to sign messages using a polynomial algorithm and ii) an attack breaking a 
cryptosystem corresponding to the considered class provides possibility to factorize 
the modulus n using an algorithm complexity of which depends polynomially on both 
the difficulty of the attack and  the value n.

The first part of the proof is evident. Factorizing n we get secret that provides 
possibility to decrypt ciphertexts and to sign messages. Both of these procedures are 
performed with polynomial algorithms, i. e. algorithms having polynomial 
complexity. Let us prove the second statement. 

Proff of case ii). Suppose we know an algorithm for breaking a cryptosystem from 
the considered class. This means that for arbitrary value a that is the kth degree 
residue modulo n we can calculate at least one of the kth degree roots modulo n. The 
last value can be used to factorize modulus n with a polynomial algorithm as follows.  

1. Select an arbitrary value Ms and calculate a = Ms
k

mod n.

2. Calculate M′s′ = k a mod n. With high probability M′s′ ≠ Ms
k
 (probability of 

this event is equal to 1 − z − 1). If M′s′  = Ms
k
, then go to step 1. 

3. Calculate gcd(M′s′ − Ms, n). With high probability gcd(M′s′ − Ms, n) = p or 
gcd(M′s′ − Ms, n) = q. (Probability that gcd(M′s′ − Ms, n) ≠ 1 is equal to 

1( 2)t u z−+ − ). If gcd(M′s′ − Ms, n) = 1, then go to step 1.  

Thus, to factorize n we should on the average execute the algorithm about 
1( 2)z t u −+ −  times, i. e. complexity of factorizing n can be polynomially expressed 

via complexity of the considered attack and the value n. Finally, we should prove the 
formulas used at step 3 of the algorithm. At this step we have two different roots of 
the kth degree modulo n: M′s′ and Ms. Accordingly to (1) these roots can be presented 
as follows: 

( ) ( )1 ( ) 1 ( )mod mod modp q
s i jM q q p M p p q M n− −= + ,                      (2) 
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( ) ( )1 ( ) 1 ( )mod mod modp q
s i jM q q p M p p q M n− −
′ ′ ′′ = + ,                 (3) 

where i′, i ∈{1, 2, …, t} and j′, j ∈{1, 2, …, u}. Due to random selection of the value 
Ms at the first step of the algorithm we have the following probabilities: 

( ) 1Pr i i t−′= =  and ( ) 1Pr j j u−′= = . In the case j j′=  we have  

( )( )1 ( ) ( )mod modq q
s s j jM M p p q M M n−
′ ′′ − = −

( )| gcd ,s s s sp M M M M n p′ ′′ ′− − = .

In the case i i′=  we have  

( )( )1 ( ) ( )mod modp p
s s j jM M q q p M M n−
′ ′′ − = −

( )| gcd ,s s s sq M M M M n q′ ′′ ′− − = ,

i. e. the algorithm described above works correctly. If the difficulty of the 
hypothetical attack Wattac is sufficiently lager then the difficulty of calculating values 
gcd(M′s′ − Ms, n) and gcd(M′s′ − Ms, n), then the average complexity of the algorithm 
is proportional to Wattac, i. e. Walg ≈ const ⋅ Wattac, where const = z⋅ (t + u)− 1.

Thus, we have proved that an efficient attack breaking a cryptosystem from the 
considered class can be transformed into efficient algorithm factorizing the modulus 
n. Theorem 1 is proved. 

Plaintext encryption, ciphertext decryption, signature generation, and signature 
verification procedures have complexity depending on the value z. In general case, for 
larger values z we have the larger complexity of the procedures. Therefore the most 
attractive cryptosystems of the considered class correspond to cases relating to small 
values z.

4   Cryptosystem with Minimum Value z

While performing decryption in the considered class of public key cryptosystems we 
compute z different variants of the plaintexts from which one is to be selected as the 
correct plaintext. Therefore it is attractively to use the system with minimum value z.
Such system corresponds to the case t = 3 (i. e. 3 | p − 1) and u = 1 (or equivalently 
t = 1 and u = 3). In the case t = k = 3 and u = 1 (or equivalently t = 1 and u = k = 3) we 
have the minimum complexity of the encryption, decryption, signature generation, 
and verification procedures. In such cases to generate a public key one should 
generate such p that 3|p − 1 and such q that number 3 does not divide q − 1. In this 
system the public encryption and signature verification are performed accordingly to 
the following formulas, respectively: 

3 modC M n= and  3 mod || , where ( )HS n H R H F M′ ′= = .

To decipher the cryptogram or to generate a signature to the document M requires 
calculation of the roots of the third degree modulo n. This procedure has the minimum 
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complexity in the case p ≡ 7 mod 9. We have three different roots {M(p)
1, M(p)

2, M(p)
3}

modulo p and only one root M(q)
1 modulo q. The value M(q)

1 is calculated as follows: 
1( ) 3 mod ( 1)

1 modq qM C q
− −= . The values M(p)

1, M(p)
2, M(p)

3, and M(q)
1 define three 

different roots modulo n which can be calculated using formula (1). In the case of 
M. Rabin’s cryptosystem we have t = k = 2, u = k = 2, and z = 4. Complexity of the 
signature generation and verification in the considered system is about the same as in 
the M. Rabin’s cryptosystems. In the case z = 3 we have minimum complexity of the 
decryption procedures. 

5   Conclusion 

This paper introduces a class of provably secure public key cryptosystem which can 
be used for secure information authentication, public key distribution, and public 
encryption. This class generalizes the M. Rabin’s cryptosystem based on the RSA 
modulus. Analogously to RSA, new cryptosystem gets its security from difficulty of 
factorizing modulus and from difficulty of finding kth root (k ≥ 2) modulo a 
composite number n. The main difference between the described class of provably 
secure cryptosystems and the RSA system consists in that in RSA we have 
gcd(e, ϕ(n)) = 1, but in the mentioned class we have gcd(k, ϕ(n)) ≥ 2. Actually, the 
fact that k | ϕ(n), where k ≥ 2, leads to existence of different values of the kth root 
modulo n and the last fact has been used in the formal security proof. 

The described class of provably secure public key cryptosystems includes 
M. Rabin’s cryptosystem as a particular case corresponding to the case t = u = k = 2 
and z = 4. The minimum value z is equal to 3. This case provides minimum 
complexity of the information authentication and encryption procedures.  
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Abstract. The emergence of powerful, full-featured and small form-
factor mobile devices enables rich services to be offered to it’s users.
As the mobile user interacts with multiple administrative domains, he
acquires various attributes. In such dynamic usage scenarios, attributes
from one domain are interpreted and used in another domain. This mo-
tivates the need for dynamic authorization at the time of interaction. In
this paper, we investigate the requirements of multi-domain interactions
and explore a new paradigm for modeling these requirements using the
UCON model for Usage Control [5]. We propose extensions to UCON in
order to accommodate dynamic authorizations requirements.

Keywords: Authorization, Multi-domain, UCON, Attribute-based Ac-
cess Control.

1 Introduction

The advent of small form-factor, high performance computing devices and high
bandwidth ubiquitous networks is enabling users to be connected anytime, any-
where with access to rich services. As users become increasingly mobile, they
transcend multiple security domains1. Context acquired in one domain can be
interpreted and used at other domains for access decisions. Our objective in this
paper is to investigate dynamic requirements for multi-domain interactions and
explore a new paradigm for modeling these properties. Traditional attribute-
based access control models have two major limitations: a. In a single domain
setting, attributes are typically pre-defined. b. In a multi-domain setting, such
models require extensive a-priori agreement of attribute semantics across these
systems. We use the term Dynamic Authorization in this paper to collectively
refer to the components required for supporting just-in-time authorization.

2 Characteristics of Multi-domain Interactions

In this section, we identify some of the desirable characteristics for user inter-
actions with multi-domain systems using a concrete example. Alice walks into a
� Copyright c©2007 Intel Corporation.

�� A detailed version is available at http://www.list.gmu.edu/confrnc/misconf/DA.pdf
1 For simplicity, we will often abbreviate ‘security domain’ simply as ‘domain’.
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Coffee 

Shop (CS)

Book 

Store (BS)

Alice

Fig. 1. Coffee Shop Example

Coffee Shop (CS) and engages in a transaction worth $100. As an appreciation,
the CS provides a ‘credit’ worth $10. This ‘credit’ could be used at various other
stores like the Bookstore (BS). Alice later uses this ‘credit’ towards purchasing
a book at the BS. Fig. 1 illustrates this scenario. In this example, ‘credit’ is the
context acquired by Alice from the CS and this affects access decision at the BS.
We now identify three key characteristics of multi-domain interactions:

1. Multi-domain interactions: Subjects and Objects interact with multiple sys-
tems and this is a key characteristic in mobile commerce. E.g. Alice interacts
with the CS and the BS which are administratively different domains.

2. Information could be dynamic and transcend systems: Due to mobility, in-
formation or context may move from one system to another and could affect
access decisions at other systems. E.g. Alice obtained a ‘credit’ from the CS
system and used it to purchase a book from the BS system.

3. No prior configuration: In order to interpret information across multiple
domains, systems may have to exchange semantics of this information. But
in mobile scenarios, information may be dynamically created and hence a-
priori agreement of semantics is not desirable. It must be interpreted at
authorization time. E.g. The CS issued ‘credit’ to Alice. The following day,
CS may issue ‘coupon’ which may be semantically different from ‘credit’.
Further, the following characteristics are also desirable:

3 New Modeling Paradigm for Dynamic Authorization

Our new paradigm is to propose modeling requirements for the three key charac-
teristics discussed earlier: 1. Multi-domain interactions, 2. Information could be
dynamic and transcend systems, 3. No prior configuration. We believe that these
three characteristics are missing from current approaches to dynamic authoriza-
tion. Characteristics 1 and 2 brings in a notion of “Multi-Domain Attributes”
which are attributes that need to be interpreted across multiple domains. Char-
acteristic 3 brings in a notion of “Dynamic Attributes” which are created dynam-
ically and are not pre-defined. In the coffee shop scenario, the ‘credit’ attribute
was dynamically created by the coffee shop just for that day when Alice inter-
acted with the system. Hence the bookstore cannot write authorization policies
to use ‘credit’ ahead of time. The bookstore needs to interpret the semantics of
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‘credit’ just when Alice uses it to buy a book. Here ‘credit’ is also an attribute
that can be used at multiple domains (CS and BS). Thus it is a Dynamic,
Multi-domain attribute. Note that Dynamic Attributes are new-born attributes
(name-value) as opposed to the notion of attribute value changing dynamically.

4 The Extended UCONABC Model

We now examine the major components of the UCON model: attributes, oblig-
ations, conditions and authorizations. [5] discusses the UCON model in great
detail. Fig. 2 shows an extended UCON model or EUCON that accommodates
multi-domain interactions. In the following subsections, we explore each of the
EUCON components in detail to support dynamic authorization.

4.1 EUCON Attributes

In UCON, attributes are properties of subjects and objects which are used for
usage decisions. We now investigate and classify EUCON attributes.

We can classify attributes based on time at which an attribute is defined:

Pre-defined Attributes : These are similar to the conventional notion of attributes.
The semantics of these attributes are pre-defined by the administrator.

Dynamic Attributes : These are attributes that are defined just-in-time. E.g. The
CS system might define new incentives like ‘credit’ at different times on different
days dynamically. For instance, the CS could create a ‘coupon’ attribute on the
following day which has a different meaning than a dollar value like ‘credit’.

We can also classify attributes based on scope as follows:

Local Attributes : These are attributes whose semantics can be interpreted only
within the domain where it was defined. It has no meaning or visibility anywhere
outside the system in which it is defined. E.g. The CS system may have a Local
Attribute called ‘id’ which may have no meaning outside the CS system.

Multi-domain Attributes: Multi-domain Attributes are attributes whose seman-
tics can be interpreted across multiple domains. E.g. The book store was able
to interpret the semantics of ‘credit’ that was issued by CS.

This classification gives us four possible combinations as follows:

Pre-defined Local Attributes (PLA): PLA’s are exactly the same as how cur-
rent attribute-based models (including UCON) define attributes. Traditionally,
PLA’s have served the purpose of access control in a single system (or domain).

Pre-defined Multi-domain Attributes (PMA): Current approaches to access con-
trol in distributed systems have the notion of PMA’s. This involves prior agree-
ment of attribute semantics across all the domains a-priori. As discussed earlier,
this is clearly not flexible and is not suitable for dynamic scenarios.

Dynamic Local Attributes (DLA): DLA’s allow systems to dynamically create
attributes interpretable within the same system. Typically such an action is
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deemed as an administrative task. However, we believe emerging next-generation
applications (like context-aware applications) would demand DLA’s. In the coffee
shop scenario, on a different day CS may create a new ‘discount’ attribute that
could be used by Alice in the coffee shop itself in the future. This ‘discount’ may
not exist all the time. Note that DLA’s may or may not be persistent.

Dynamic Multi-domain Attributes (DMA): DMA is fundamentally a new ap-
proach to modeling emerging usage scenarios. As discussed earlier, systems may
define attributes dynamically that needs to be interpreted at multiple domains.
This requires authorization policies to be created dynamically. In the coffee shop
scenario, a new attribute called ‘credit’ was dynamically created at some time
and Alice received it. Further, Alice was able to use this attribute at the book-
store. The bookstore dynamically interpreted the semantics of ‘credit’ by in-
teracting with the coffee shop and authorized purchasing a book with ‘credit’.
DMA could apply to both subjects and objects. In the coffee shop scenario, it is

Usage 
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DMA

Obligations

Rights

PLA

Objects

PMA

DLA

PM DL DM

PL PM DL DM

Abbreviations:

PL: Pre-defined Local

PM: Pre-defined Multi-domain

DL: Dynamic Local

DM: Dynamic Multi-domain

PLA: PL Attributes

PMA: PM Attributes

DLA: DL Attributes

DMA: DM Attributes

Subjects

DMA

PLA

PMA

DLA

Authori-

zation

PL PM DL DM

PL

Fig. 2. Extended UCON Components

clear that ‘credit’ is the DMA of a subject (Alice). Here is another scenario to
appreciate the generality of DMA’s for subjects:

Airport Security: In airport scenario, a passenger interacts with multiple sys-
tems. Further each system (security, shops, airlines, etc.) may define their own
attributes dynamically. For example, suppose that the security check-in system
in an airport and the airline systems are multi-domain systems with no a-priori
configuration. When Alice checks-in through the security system, she obtains
a DMA called “cleared=true”. This DMA could then be used by Alice at the
airline’s boarding system to board the airplane.

Following is an example of DMA’s for objects:

Airport Security: Following the airport security example discussed for subjects,
when Alice checks in at airport security, all the objects that she carries (e.g.
luggage, laptop, etc.) could obtain a DMA “cleared=true”. Alice can use this
DMA at the airline system in order to board the flight with her objects.
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4.2 EUCON Authorizations

In UCON, the authorization component contains rules based on subject and ob-
ject attributes. We discussed that attributes could be classified into four different
categories. Because authorization involves constructing rules based on subject
and object attributes, we have a similar notion for EUCON authorizations:

Pre-defined Local Authorization: Current UCON’s authorization would fall un-
der this category. These rules have served the needs of traditional systems.

Pre-defined Multi-domain Authorization: This involves constructing rules based
on Pre-defined Multi-domain Attributes. Current approaches to authorization
in multi-domain systems take this approach. Attributes are pre-defined and au-
thorization rules are constructed at multiple domains based on these attributes.

Dynamic Local Authorization: This involves constructing rules based on Dy-
namic Local Attributes. In the coffee shop scenario, a dynamic local authoriza-
tion rule could be constructed so that subjects (e.g. Alice) who obtained ‘credit’
cannot obtain another incentive say ‘coupon’ at the same time.

Dynamic Multi-domain Authorization: This involves constructing dynamic au-
thorization rules by interpreting Dynamic Multi-domain Attributes. E.g. The
bookstore needs to interpret ‘credit’ dynamically and construct dynamic multi-
domain authorization rules. Exactly how such policies are constructed is an
enforcement level issue and restrictions should not be made in the policy model.

4.3 EUCON Obligations and Conditions

In UCON, obligations are actions a subject needs to perform before an access
can be granted. For example, a subject may be obligated to ‘agree’ to a license
before an object can be accessed. In UCON, conditions are system level factors
that need to hold for access to be granted. For example, a server’s load should
be below a threshold value in order to accept new client connections.

Similar to attributes, in EUCON we can classify both obligations and condi-
tions as: Pre-defined Local, Pre-defined Multi-domain, Dynamic Local, Dynamic
Multi-domain. Pre-defined local and dynamic local obligations and conditions
are similar to their attribute counter-parts. We discuss the other two below:

Pre-defined Multi-domain Obligations (and conditions): These are pre-defined
obligations (and conditions) interpretable across multiple systems. Note that
these are obligations (and conditions) on using Multi-domain Attributes.

Dynamic Multi-domain Obligations: These are obligations defined dynamically
and are interpreted at multiple systems at authorization time. Again note that
these are obligations on using Multi-domain Attributes at different systems. E.g.
Suppose that there are two coffee shops: the coffee shop that issued ‘credit’ –
CS and a coffee shop located within the book store – CS@BS. When Alice uses
her ‘credit’ at BS, there could be an obligation that Alice needs to engage in a
transaction with the CS@BS before ‘credit’ could be used at the BS.
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Dynamic Multi-domain Conditions: These are conditions on using Multi-
domain Attributes at different systems. Following Dynamic Multi-domain Oblig-
ations, say that Alice fulfills her obligation. The BS could then dynamically dis-
cover a condition on using ‘credit’ that current ‘credit’ usage on all coffee shop
systems has not exceeded $1000 and the ‘credit’ expires on 05-25-2007.

5 Related Work

Many related work exists in the arena of dynamic authorization ([2], [1], [4],
[6], [3]). We only discuss two of them here. In [1], a Contextual Attribute-Based
Access Control model is proposed. The authors define Transaction Attributes
(TA) as attributes that a subject obtains as part of a transaction. These TA’s
would fall under our Pre-defined Multi-domain category. In [2], the authors iden-
tify requirements for access control in open environments similar to ours. They
survey extensions that have been proposed in general in different access control
models. However our modeling paradigm of creating and interpreting attributes
dynamically across multiple systems is substantially different.

6 Conclusion and Future Work

In this paper, we explored a new paradigm for modeling dynamic authorizations
in multi-domain systems. Current access control models including UCON pre-
define their components and we demonstrated with compelling usage scenarios
that such static definitions would not serve the needs of mobile and dynamic
multi-domain interactions. We proposed extensions to the UCON model to ex-
press dynamic authorization policies. A formal EUCON model for multi-domain
interactions needs to be specified. Enforcement and Implementation models sup-
porting dynamic authorization need to be studied.
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BP 92101 1 rue de la Noë 44321 Nantes Cedex 3 France
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Abstract. In this paper, we focus on distributed systems subject to
security issues. Such systems are usually composed of two entities: a
high level user and a low level user that can both do some actions. The
security properties we consider are non-interference properties. A system
is non-interferent if the low level user cannot deduce any information by
playing its low level actions. Various notions of non-interference have
been defined in the literature, and in this paper we focus on two of
them: one trace-based property (SNNI) and another bisimulation-based
property (BSNNI).

For these properties we study the problems of synthesis of a high level
user so that the system is non-interferent. We prove that a most permis-
sive high level user can be computed when one exists.

Keywords: Non-Interference, Controller Synthesis.

1 Introduction

Security in Distributed Systems. Nowadays computing environments allow
users to employ programs that are sent or fetched from different sites to achieve
their goal, either in private or in an organization. Such programs may be run as
a code to do simple calculation task or as interactive communicating programs
doing IO operations or communications. Sometimes they deal with secret infor-
mation such as private data of a user or as classified data of an organization.
Similar situations may occur in any computing environments where multiple
users share common computing resources. One of the basic concerns in such
context is to ensure programs not to leak sensitive data to a third party, ei-
ther maliciously or inadvertently. This is one of the key aspects of the security
concerns, that is often called secrecy.

Non-Interference. The information flow analysis addresses this concern by
clarifying conditions when a flow of information in a program is safe (i.e. high
level information never flows into low level channels). These conditions referred
to as non-interference properties, capture any causal dependency between high
level and low level behaviours. Their characterization has appeared rapidly out of
the scope of the common safety/liveness classification of system properties con-
sidered by the system verification community during the last twenty five years.
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Also, in recent years, verification of information flow security has become an
emergent field of research in computer science. It can be applied to the analysis
of cryptographic protocols where numerous uniform and concise characteriza-
tions of information flow security properties (e.g. confidentiality, authentication,
non-repudiation or anonymity) in terms of non-interference have been proposed.

Control vs. Verification. The verification problem for a given system S and
a specification φ consists in checking whether S satisfies φ which is often writ-
ten S |= φ and referred to as the model-checking problem. The control problem
assumes the system is open i.e. we can restrict the behaviour of S: some events
in S are controllable and the others are uncontrollable, and we can sometimes
disable controllable actions. A controller C for S is a mapping which gives, for
any history1 ρ of the system S, the controllable action that can be played (a
controller cannot restrict uncontrollable actions). The supervised system S × C
(read “S supervised by C”) is composed of the subset of the behaviours of S
that can be generated using the action prescribed by C. The control problem for
a system S and a specification φ asks the following: Is there a controller C s.t.
S×C |= φ ? The associated control synthesis problem asks to compute a witness
controller C.

Controlling Non-Interference. In this paper we introduce non-interference
control problems. In this setting we assume that high level actions are control-
lable and low level actions are uncontrollable. Given a system S, a type of non-
interference φ ∈ {SNNI,BSNNI}, the φ-non-interference control problem asks
the following: Is there a controller C such that S×C has the φ-non-interference
property? The associated synthesis problems ask to compute a witness controller.

Related Work & Our Contribution. [1] considers the complexity of many
non-interference verification problems but control is not considered in this pa-
per. [2] presents a tranformation that removes timing leaks from programs to
make them non-interferent w.r.t. a bisimulation condition. The transformation
is decidable but this problem is still different from that of control. Indeed, the
transformation removes timing leaks from programs without untimed leaks, by
padding with dummy instructions where needed. There is also a large body of
work on the use of static analysis techniques to enforce information flow policies.
A general overview may be found in [3]. Much of this work is behaviour based;
systems are deemed to be interference-free if their trace sets, sequences of actions
labelled “high” or “low”, satisfy certain properties. Here we use a more exten-
sional approach, saying that a system is interference-free if low level observers
are unable to discern the presence or absence of high level components. However
a formal comparison between notions of non-interference on programming lan-
guages and similar notions on event-based systems is not straightforward and
at the best of our knowledge, has never been investigated. The non-interference
control problem was first considered in [4] for dense timed systems given by
timed automata. The timed non interference properties are expressed in terms
1 If the system is a finite automaton, the history is the complete run with states and

labels of the transitions.



Synthesis of Non-interferent Distributed Systems 161

of states equivalence and co-simulation relations. These control problems are
proved decidable and the associated synthesis problems are computable but lead
to a non-interferent controlled system which is not necessarily the most permis-
sive.

In this paper, we precisely define the non-interference control problems for
two types of non-interference properties: a trace-based property, SNNI and a
bisimulation-based property, BSNNI. We show that both problems are decidable.
Moreover, given a system S, we prove that a most permissive non-interferent
(sub)system of S can be computed. To our knowledge, non-interference control
problems for finite state systems have not been considered so far.

Organization of the paper. Section 2 recalls the basics of finite automata,
languages, bisimulation, and µ-calculus. Section 3 is devoted to the definition of
non-interference and known results about control problems for finite automata.
Section 4 is the core of the paper and contains the main results: control of SNNI
and BSNNI. Section 5 gives the directions of future work.

2 Preliminaries

Let Σ be a finite set, ε �∈ Σ and Σε = Σ∪{ε}. A word w over Σ is a sequence of
letters w = a0a1 · · · an s.t. ai ∈ Σ for 0 ≤ i ≤ n. Σ∗ is the set of words over Σ.
We denote u.v the concatenation of two words. As usual ε is also the empty word
s.t. u.ε = ε.u = u. A language is a subset of Σ∗. Given two languages A and
B over Σ, A.B is the set of words defined A.B = {w ∈ Σ∗ |w = u.v with u ∈
A, v ∈ B}. The set of mappings from A to B is denoted [A→ B]. Given a word
w = a0a1 · · · an and L ⊆ Σ the projection of w over L is denoted w/L.

2.1 Labeled Transition Systems

Definition 1 (Labeled Transition System). A labeled transition system
(LTS) is a tuple A = (S, s0, Σε,→) where S is a set of states, s0 is the ini-
tial state, Σ a finite alphabet of actions and →⊆ S × Σε × S is the transition
relation. We use the notation q

a−→ q′ if (q, a, q′) ∈→. A LTS is finite is S is
finite. We let En(q) be the set of labels a s.t. (q, a, q′) ∈→ for some q′. �

A run ρ of A from s is a finite sequence of transitions ρ = q0
a1−→ q1

a2−→ · · · an−−→ qn
s.t. q0 = s and (qi, ai, qi+1) ∈→ for 0 ≤ i ≤ n − 1. We let Runs(s,A) be
the set of runs from s in A and Runs(A) = Runs(s0, A). The trace of ρ is
trace(ρ) = a0a1 · · · an. A word w ∈ Σ∗ is generated by A if w = trace(ρ) for some
ρ ∈ Runs(A). The language generated2 by A, L(A), is the set of words generated
by A. Two transition systems A and B are language equivalent denoted A ≈L B
if L(A) = L(B) i.e. they generate the same set of words.

Definition 2 (Product of LTS). Let A1 = (S1, s
1
0, Σ1, →) and A2 = (S2, s

2
0,

Σ2,→) be two LTS. The synchronized product of A1 and A2 is the LTS A1 ×
2 Notice that L(A) is prefix closed as we use LTS that have no accepting or final states.
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A2 = (S, s0, Σ,→) defined by: S = S1 × S2, s0 = (s10, s
2
0), Σ = Σ1 ∪ Σ2 and

(s1, s2)
λ−→ (s′1, s

′
2) if for some i ∈ {1, 2} (i) either si

λ−→ s′i with λ ∈ Σ \Σ2−i+1

and s′2−i+1 = s2−i+1 or (ii) si
λ−→ s′i if λ ∈ Σ1 ∩Σ2. �

2.2 Bisimulation, Restriction and Abstraction

Definition 3 (Bisimulation). Let A = (SA, s
A
0 , Σ

ε,→), B = (SB, s
B
0 , Σ

ε,→)
be two LTS. R ⊆ SA × SB is a bisimulation if

1. for each s ∈ SA if s λ−→ s′, then there is a state t ∈ SB s.t. sR t and t λ−→ t′

and s′R t′;
2. for each t ∈ SB if t λ−→ t′, then there is a state s ∈ SA s.t. sR t and s λ−→ s′

and s′R t′.

Two LTS A and B are strongly bisimilar if there is a bisimulation R for A and
B s.t. (sA

0 , s
B
0 ) ∈ R. We write A ≈S B if A and B are strongly bisimilar. �

Definition 4 (ε-Abstract LTS). Let A = (S, s0, Σε,→) be a LTS. The ε-
abstract LTS associated with A is Aε = (S, s0, Σ,→ε) where s u−→ε s

′ iff there

is a run s
ε∗.u.ε∗
−−−−−→ s′ in A. �

Two LTS A and B are weakly bisimilar, denoted A ≈W B, if Aε ≈S Bε.

The abstracted transition system hides a set of labels L ⊆ Σ:

Definition 5 (Abstracted Transition System). Given a LTS A = (S, s0,
Σε,→) and L ⊆ Σ we define the LTS A/L = (S, s0, (Σ\L)ε,→L) where q a−→L

q′ ⇐⇒ q
a−→ q′ for a ∈ Σ \ L and q ε−→L q′ ⇐⇒ q

a−→ q′ for a ∈ L ∪ {ε}. �
The restricted transition system cuts transitions labeled by the letters in L ⊆ Σ:

Definition 6 (Restricted Transition System). Given a LTS A = (S, s0,
Σε,→) and L ⊆ Σ, A \ L is the LTS (S, s0, (Σ \ L)ε,→L) where q a−→L q′ ⇐⇒
q

a−→ q′ for a ∈ Σε \ L. �

2.3 The Modal µ-Calculus and Characteristic Formulæ

The modal µ-calculus was introduced by Kozen [5]. It is used to specify properties
of LTS and often called the assembly language w.r.t. temporal logics formalisms.
A recent survey on the subject can be found in [6]. Let V be a countable set
of formula variables and A = (S, s0, Σ,→) be a LTS. We consider the modal
µ-calculus with formulas in positive normal form. It is defined by the following
grammar:

φ ::= tt | ff | φ1 ∧ φ2 |φ1 ∨ φ2 | [σ]φ | 〈σ〉φ | Z | µZ.φ | νZ.φ. (1)

where σ ∈ Σ, Z ∈ V and B = {tt,ff} is the set of boolean values. If φ is generated
by the previous grammar we say that φ is a µ-formula or formula for short. A
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closed formula (formula for short in the sequel) of the µ-calculus is a formula
s.t. every variable is under the scope of an operator ν or µ. As usual we agree
on ∧φ∈∅φ = tt and ∨φ∈∅φ = ff. We denote [[ϕ]]Aρ ⊆ S the interpretation of ϕ
w.r.t. a LTS A and a context ρ ∈ [V −→ 2S ]. [[ϕ]]Aρ is defined inductively by the
equations of Fig. 1. For the semantics definition we use the notations:

[[Z]]Aρ = ρ(Z) [[φ ∧ ψ]]Aρ = [[φ]]ρ ∩ [[ψ]]Aρ
[[¬φ]]Aρ = S \ [[φ]]Aρ [[φ ∨ ψ]]Aρ = [[φ]]ρ ∪ [[ψ]]Aρ
[[〈σ〉φ]]Aρ = [[〈σ〉]]A([[φ]]Aρ ) [[νZ.φ]]Aρ =

�{ξ ⊆ S : ξ ⊆ [[φ]]Aρ[Z �→ξ]}
[[[σ]φ]]Aρ = [[[σ]]]A([[φ]]Aρ ) [[µZ.φ]]Aρ =

�{ξ ⊆ S : [[φ]]Aρ[Z �→ξ] ⊆ ξ}

Fig. 1. Semantics of the modal µ-calculus

– let Z ∈ V and ρ be a context, ξ ∈ 2S, ρ[Z �→ ξ] is the context defined by
ρ[Z �→ ξ](X) = ρ(X) if X �= Z and ρ[Z �→ ξ](Z) = ξ;

– given σ ∈ Σ, [[[σ]]]A and [[〈σ〉]]A ∈ [2S −→ 2S ] are the predicate transformers
defined as follows:

[[[σ]]]A(X) = {s ∈ S : ∀s′ s.t. s σ−→ s′ then s′ ∈ X}
[[〈σ〉]]A(X) = {s ∈ S : ∃s′ s.t. s

σ−→ s′ and s′ ∈ X}.

For a closed formula φ, one has that [[φ]]Aρ = [[φ]]Aρ′ , for any contexts ρ, ρ′. In
this case, we simply use [[φ]]A. We define the satisfaction relation |= by: A, s |= φ
if and only if s ∈ [[φ]]A. If A, s0 |= φ, we say that A is a model of φ, in short
A |= φ.

Definition 7. Let A = (S, s0, Σ,→) be a LTS. A formula φ s.t. A |= φ is a
characteristic formula of A up to strong bisimulation (or simply characteristic
formula of A) if for any LTS B, A ≈S B iff B |= φ. �

Let A = (S, s0, Σ,→). A characteristic formula CF(A) of A is given by the
system of equations [7,8] for each q ∈ S:

Xq =
∧

a,q′, q
a−→q′

〈a〉Xq′ ∧
∧

a∈Σ

[a]
( ∨

q′∈Q,q
a−→q′

Xq′

)

By definition of CF(A) we have:

Lemma 1. A ≈S B ⇐⇒ B |= CF(A).

3 Control and Non-interference

3.1 Control Problems

Let A = (S, s0, Σ,→) be a LTS s.t. the set of actions is partitioned into Σu

(uncontrollable actions) and Σc (controllable actions). In this case we say A is
a Game LTS (GLTS).
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Definition 8 (Controller). A controller for A is a (possibly infinite) LTS C =
(Q, q0, Σ,→) which is complete w.r.t. Σu: ∀q ∈ Q, ∀u ∈ Σu, there is some q′ ∈ Q
s.t. (q, u, q′) ∈→. �

Supervisory Control Problem [9,10]. Given a language L, the prefix closure
of L, denoted L is the set of prefixes of words in L. L is a closed language if
L = L. Let A be a GLTS and ∅ ⊂ K ⊆ L(A) be a closed language. K is
controllable w.r.t. (L(A), Σu) if K.Σu ∩ L(A) ⊆ K.

The supervisory control problem (SCP) asks the following: given A and K, is
there a controller C s.t. L(C ×A) = K ?

One result in [9,10] is that such a controller exists iff K is controllable. In
case K is not controllable, one can compute the largest language included in
K that is controllable: it is called the supremal controllable sub-language of K.
This problem is referred to as the supremal controllable sub-language problem:

Compute the supremal controllable sub-language of K. (SCSLP)

Let sup(A,K) be the supremal controllable sub-language. By definition any
controllable language for A is a subset of sup(A,K).

Assume K is a language given by a deterministic finite automaton AK .
Computing sup(A,K) can be done in polynomial time in the size of A and
AK . In case sup(A,K) �= ∅ we can even obtain the most liberal controller C
s.t. L(C ×A) = sup(A,K) in polynomial time. C can be represented by a finite
state automaton: one can prove (e.g [9,10,11]) that C is a memoryless3 controller
for the GLTS A×ĀK where ĀK generates the complement language of K. Hence
the most liberal controller C is a finite memory4 controller that has size at most
|A| · |ĀK |.

µ-Calculus Control Problem [12,13]. Given a LTS A, a closed µ-formula
ϕ, the µ-control problem (µ-CP) is the following:

Is there a (non trivial) controller C such that C × A |= ϕ ? (µ-CP)

The actual control problem we want to solve is to compute a non trivial controller
i.e. one that does not disable every action. This problem has been proved to be
solvable in [12,13]. An algorithm to solve µ-CP and compute the most permissive
controller is given [12]: 1) first construct a modal-loop formula5 ϕ(A) which is a
quotient automaton of ϕ by A s.t. P |= ϕ(A) iff P ×A |= ϕ; 2) transform ϕ(A)
into a non deterministic loop automaton and synthesize a controller for this
automaton. This transformation into an automaton may cause an exponential
blow-up and the complexity of the µ-CP depends on many parameters. The
exact complexity of µ-CP is not yet known nevertheless a finite memory most
permissive controller can be synthesized if A is controllable w.r.t. ϕ.
3 C is a memoryless controller for A if C can be described using the states of A: the

controllable events that are allowed after a particular sequence of events depend only
on the state that is reached in A after reading this sequence of events.

4 C may need more states than the one of A and in this sense it has finite memory.
5 Modal-loop formulas are µ-formulas extended with a modality to check loops.
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3.2 Non-interference Problems

The strong non-deterministic non-interference (SNNI) property has been first
proposed by Focardi [14] as a trace-based generalization of non-interference for
concurrent systems. Let A = (S, s0, Σ,→) be a GLTS, s.t Σ = Σu ∪ Σc: Σu

(resp. Σc) is the set of public (resp. private) actions.

Definition 9 (SNNI). A has the strong non-deterministic non-interference
(SNNI) property if and only if A/Σc ≈L A\Σc. �
The SNNI verification problem (SNNI-VP) is the following: given a GLTS A with
Σ = Σu ∪Σc, decide whether A has the SNNI property. The problem of estab-
lishing language equivalence of non-deterministic finite automata is reducible in
polynomial time to the problem of checking trace equivalence. Such a problem
is known to be PSPACE-complete. Also, SNNI-VP is in PSPACE as well [14].

Example 1 (SNNI). Fig. 2(a) gives an example of a system that has not the
SNNI property. The high level (controllable) actions are Σc = {h1, h2} and the
low level (uncontrollable) actions are Σu = {l1, l2}. l2 is a trace of A/Σc but not
of A\Σc and A does not have the SNNI property. If we consider A without the
action h2, l2 (no states 4 and 5) then A satisfies the SNNI property. �

0 1 2

3 4 5

h1 l1

l1
h2

l2

(a) The automaton A

0 1
h1

l1, l2 l1, l2

h1, h2

(b) The Most Liberal Controller for A

Fig. 2. Automaton and Controller

We now give the bisimulation-based definition of strong non-deterministic non-
interference proposed in [14]. Actually, any bisimulation-based information flow
property presented in [14] could be recast in a similar manner.

Definition 10 (Bisimulation-based SNNI). A has the bisimulation-based
strong non-deterministic non-interference (BSNNI) property if and only if
A/Σc ≈W A\Σc. �
The BSNNI verification problem (BSNNI-VP) is the following: given a GLTS A
with Σ = Σu ∪ Σc, decide whether A has the BSNNI property. The problem is
known to be polynomial time [14] in the size of the ε-abstract automaton Aε.

4 Control of Non-interference

The previous non interference problems (SSNI-VP, BSNNI-VP) consist in check-
ing whether a GLTS has the non-interference property. In case the answer is “no”
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one has to investigate why the non-interference property does not hold, modify
A and check again the property again. In contrast to the verification problem,
the control problem indicates whether there is a way of restricting the behaviour
of the high level user to ensure a given property. It is interesting because we
can start with a very permissive high level user and then check whether its be-
haviour can be restricted by a controller to ensure a non-interference property.
The SNNI-Control Problem (SNNI-CP) is the following: given a GLTS A with
Σc ∪Σu,

Is there a controller C s.t. (C ×A)/Σc ≈L (C ×A)\Σc? (SNNI-CP)

As stated previously, we are interested in non trivial controllers i.e. those that do
not disable every action (which is always a solution). In the sequel we show that
we can compute the most liberal controller: if the most liberal controller disables
every action then there is no non trivial controller and otherwise we obtain all
the possible non trivial controllers. The SNNI-Control Synthesis Problem (SNNI-
CSP) asks to compute a witness when the answer to the SNNI-CP is “yes”. The
BSNNI-CP is defined in the obvious manner: given a GLTS A with Σc ∪Σu,

Is there a controller C s.t. (C ×A)/Σc ≈W (C ×A)\Σc? (BSNNI-CP)

Again the synthesis problem associated with the BSNNI-CP asks to compute a
witness when the answer to the BSNNI-CP is “yes”. In the sequel we show how
to solve Problems SNNI-CP and BSNNI-CP.

4.1 SNNI Control Problem

We reduce the SNNI-CP to the supervisory control problem. Let U be an au-
tomaton that accepts Σ∗

c . We first prove the following lemma:

Lemma 2

(C ×A)/Σc ≈L (C ×A)\Σc ⇐⇒ L(C ×A) ⊆ L(A\Σc × U) ∩ L(A).

Proof. By definition, (C×A)/Σc ≈L (C×A)\Σc ⇐⇒ L((C×A)/Σc) = L((C×
A)\Σc). First notice that L((C×A)\Σc) = L(A\Σc). Indeed, any controllerC for
A cannot prevent uncontrollable actions from occurring. Moreover, a controller
can only restrict the set of controllable actions from any state s and thus (C ×
A)\Σc is just the LTS A where all the branches following a Σc action have been
pruned. Notice also that L((C × A)\Σc) ⊆ L((C × A)/Σc). Using the previous
two equations, we obtain:

(C ×A)/Σc ≈L (C ×A)\Σc ⇐⇒ L((C ×A)/Σc) ⊆ L(A\Σc)

Moreover we can also prove that for any controller C for A:

(i)L((C ×A)/Σc) ⊆ L(A\Σc) ⇐⇒ (ii)L(C ×A) ⊆ L(A\Σc × U) ∩ L(A)

Assume (i) holds. Let w ∈ L(C × A). Then w/Σc ∈ L(C × A)/Σc = L((C ×
A)/Σc). By (i), w/Σc ∈ L(A\Σc). Then w must be equal to w/Σc in which
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some Σc actions are inserted, which is exactly the definition of L(A\Σc×U). As
L(C × A) ⊆ L(A), this entails L(C × A) ⊆ L(A\Σc × U) ∩ L(A). Assume (ii)
holds. Let w ∈ L((C × A)/Σc). By definition there is some w′ ∈ L(C × A) s.t.
w = w′/Σc. By (ii) w′ ∈ L(A\Σc × U). This entails w ∈ L(A\Σc). *+
This enables us to reduce the SNNI-CP to SCSLP:

Theorem 1. The SNNI-CSP is in EXPTIME.

Proof. The SNNI-CP asks whether there exists a controller C s.t. (C×A)/Σc ≈L
(C×A)\Σc. Using Lemma 2, this problem amounts to finding a controller C s.t.
L(C ×A) ⊆ L(A\Σc×U)∩L(A). Thus we just need to solve an instance of the
SCSLP with K = L(A\Σc×U)∩L(A). The right-hand side of this equation is a
fixed (closed) language K that can be generated by a deterministic automaton
AK . Notice that as A may be non deterministic, this automaton has size at most
exponential in the size of A. As stated in section 3.1, we can compute the most
liberal controller s.t. C s.t. (C×A)/Σc ≈L (C×A)\Σc and moreover C is a finite
memory controller of exponential size in the size of A. Indeed, C is a memoryless
controller for a game A× ĀK where ĀK generates the complement language of
K. Notice that if A is deterministic the algorithm becomes polynomial because
no determinization step is needed. *+
A consequence of Theorem 1 is that SNNI-VP can be solved by our algorithm:
to solve SNNI-VP, we compute the most liberal controller C and then check that
for each state (s, p) of A × ĀK we have En(s, p) = En(s) i.e. the most liberal
controller does not prevent any of the high level actions.

Example 2 (Control of SNNI). We use the automaton of Fig. 2(a) (example 1)
to show how to synthesize a controller that ensures SNNI. We recall that Σc =
{h1, h2} and Σu = {l1, l2}. First we have L(A) = {h1.l1, l1, h2.l2}, L(A\Σc ×
U) = Σ∗

c .l1.Σ
∗
c , and thus L(A) ∩ L(A\Σc × U) = {h.l1, l1}.

We can use standard controller synthesis procedures6 (see e.g. [11]) to compute
the most liberal controller. This is a controller that avoids states {4, 5} in A and
thus prevents h2. The subsystem of A obtained by removing h2 is the maximal
subsystem that has the SNNI property and the most liberal controller C is given
on Fig. 2(b). �

4.2 BSNNI Control Problem

We can define a satisfaction relation |=ε that considers the ε action as the in-
visible action and extend our interpretation of µ-calculus formulas over LTS
containing ε by: A |=ε φ ⇐⇒ Aε |= φ. If L ⊆ Σε, we define the following
“macro” operators for the µ-calculus:

[L]ϕ def= ∧b∈L[b]ϕ 〈L〉ϕ def= ∨b∈L〈b〉ϕ
〈L∗〉ϕ def= µX.(ϕ ∨ 〈L〉X) [L∗]ϕ def= νX.(ϕ ∧ [L]X)

6 This generates state based memoryless controllers which generates the supremal
controllable sub-language of A w.r.t. L(A) ∩ L(A\Σc × U).
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The translation κL(ϕ) of a µ-formula ϕ w.r.t. L ⊆ Σε is inductively given by:

κL(Z) = Z κL(¬ϕ) = ¬κL(ϕ)
κL(φ ∧ ψ) = κL(φ) ∧ κL(ψ) κL(φ ∨ ψ) = κL(φ) ∨ κL(ψ)
κL([σ]ϕ) = [L∗][σ][L∗]κL(ϕ) κL(〈σ〉ϕ) = 〈L∗〉〈σ〉〈L∗〉κL(ϕ)
κL(νZ.φ) = νZ.κL(ϕ) κL(µZ.φ) = µZ.κL(ϕ)

Lemma 3. Let L ⊆ Σ. Then A/L |=ε ϕ ⇐⇒ A |= κL(ϕ).

Proof. It follows directly from Definitions (5) and (4) and |=ε. *+
Example 3. Let A to be the automaton of Fig. 2(a) (example 1). We recall that
Σc = {h1, h2} and Σu = {l1, l2}. CF (A\Σc) is defined by the following equation
system:

X0 = 〈l1〉X3 ∧ [l1]X3 ∧ [l2]ff
X3 = [l1]ff ∧ [l2]ff

and κΣc(CF (A)) is defined by the following equation system:

X0 = 〈Σ∗
c 〉〈l1〉〈Σ∗

c 〉X3 ∧ [Σ∗
c ][l1][Σ∗

c ]X3 ∧ [Σ∗
c ][l2][Σ∗

c ]ff
X3 = [Σ∗

c ][l1][Σ∗
c ]ff ∧ [Σ∗

c ][l2][Σ∗
c ]ff �

Moreover we can relate weak bisimulation, hiding and satisfiability of a charac-
teristic formula:

Lemma 4. Assume B is an automaton with no ε transitions and L ⊆ Σ. Then
A/L ≈W B ⇐⇒ A |= κL(CF(B)).

Proof.

A/L ≈W B ⇐⇒ (A/L)ε ≈S B [by definition of ≈W ]
⇐⇒ (A/L)ε |= CF(B) [by Lemma 1]
⇐⇒ A/L |=ε CF(B) [by definition of |=ε]
⇐⇒ A |= κL(CF(B)) [by Lemma 3] *+

Using the previous lemmas and the characteristic formula CF(A) of a LTS, we
can reduce the BSNNI-CP to a µ-CP:

Theorem 2. BSNNI-CP is decidable and if the answer to the BSNNI-CP is
“yes” a most permissive controller can be effecively synthesized i.e. BSNNI-CSP
is computable.

Proof. The BSNNI-CP is the following (Cf. equation (BSNNI-CP)):

Is there any controller C for A s.t. (C × A)/Σc ≈W (C ×A)\Σc?

As C does not restrict the uncontrollable actions, we have again that (C ×
A)\Σc = A\Σc. We can then compute the characteristic formula for A\Σc and
obtain CF(A\Σc). Applying Lemma 4 we obtain:

(C ×A)/Σc ≈W (C ×A)\Σc ⇐⇒ (C ×A)/Σc ≈W A\Σc

⇐⇒ (C ×A) |= κΣc(CF(A\Σc))



Synthesis of Non-interferent Distributed Systems 169

This enables us to reduce the BSNNI-CP to the following µ-CP:

∃C s.t. C ×A |= κΣc(CF(A\Σc))

We have now a µ-CP to solve of the form ∃C s.t. C × A |= ϕ with ϕ a µ-
calculus formula. This can be done as stated in [12,13]. If A is controllable w.r.t.
κΣc(CF(A\Σc)) we can build a finite memory most permissive controller that
satisfies BSNNI. *+
As stated in section 3 the complexity of µ-CP is not yet known and thus we
cannot obtain complexity result with our reduction.

Example 4 (Control of BSNNI). We use the automaton of Fig. 2(a) (example 1)
to show how to synthesize a controller that ensures BSNNI. There are four
possibilities for the most permissive controller C: either it allows {h1, h2} or
{h1} or {h2} or nothing. If it allows h2, the initial state of A × C does not
satisfy [Σ∗

c ][l2][Σ∗
c ]ff in X0 because after h2 an action l2 is enabled which is

forbidden by κΣc(CF (A\Σc)). If it allows l1, A × C satisfies κΣc(CF (A\Σc))
and thus the most permissive controller is the one given by Fig. 2(b) again. �

5 Conclusion

In this paper we have defined the control problems SNNI-CP and BSNNI-CP for
the two types of non-interference properties SNNI and BSNNI. We have proved
that SNNI-CP and BSNNI-CP are decidable and we solved both associated
control synthesis problems i.e. given a system S, compute the most permissive
non-interferent (sub)system of S. Our future work will consist in:

– extending our result to other types of non-interference (e.g TSNNI, PBNDC
or BNDC . . . );

– finding the exact complexity of both SNNI-CP and BSNNI-CP;
– implementing our framework. For SNNI there is BDD based tool [15] to solve

the supervisory control problem. Concerning BSNNI and the µ-CP, the tool
Synthesis [16] implements the theoretical setting of [12]. This would enable
us to apply our results to reasonable size problems.

– extending our results to timed systems and timed non-interference to gener-
alize and refine the results of [4].
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Abstract. Trust management systems provide a flexible way for per-
forming decentralized security management. However, most trust man-
agement systems only support monotonic policies. Compared with non-
monotonic policies, monotonic ones are less flexible and cannot express
policies such as “Chinese wall policies” and “separation of duties”. To
support non-monotonic policies, trust management systems must be able
to correctly identify the credentials which a subject has that are required
by the policies. Previous efforts address the problem by letting the system
query the issuers directly to verify the possession status of the creden-
tials. But this approach can violate the subject’s privacy. The main con-
tribution of this paper is a cryptographic credential verification scheme
for non-monotonic trust management systems that can correctly iden-
tify the credentials that a subject has while also protecting the subject’s
privacy. We also analyze the security of the scheme and prove that with
correct construction and certain cryptographic assumptions, the scheme
is secure.

Keywords: Trust Management, Non-monotonic Policy, Privacy, Cryp-
tography.

1 Introduction

In the past ten years, we have seen the emergence of trust management sys-
tems for access control and privacy protection. Trust management systems have
advantages in flexibility, scalability and extensibility over traditional security
mechanisms and support decentralized security management for contemporary
distributed computing environments.

Trust management was first proposed by Blaze et al. [1]. It aims to provide
a unified approach to specify and interpret security policies, credentials and
relationships that allow direct authorization of security-critical actions. The basic
problem that they address is: “Does the set of credentials C prove that the
request R complies with the local security policy P?”

Most trust management systems, such as [2,3,4,5,6], assume monotonicity:
additional credentials can only result in the increasing of privilege. There are
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several reasons why monotonicity is a desirable property in trust management
[7,4,8]. Firstly, monotonicity simplifies the design of trust management systems.
The systems do not need to evaluate all potential policies and credentials, but are
still provably correct and analyzable. Monotonicity also avoids policy conflicts
[9,10] which are often caused by non-monotonicity. Furthermore, in some cases,
non-monotonic policies can be converted into monotonic policies. For example,
instead of defining a negative policy that requires credential C, one can define a
positive policy to require a credential of “not have C”.

The monotonic assumption oversimplifies the real world by cutting off the
negative part, thus it cannot handle many important scenarios. For example,
with monotonic semantics, it is hard to express explicit negative policies such as
a consultant cannot serve company A and B at the same time because there is
a conflict of interest (the Chinese Wall policy); a bank teller should not be an
auditor of the same bank (Separation of Duties). Explicit negation is particularly
important for authorization in distributed system scenarios, where the number
of potential requesters is high. Without negations, we cannot express policies
such as “allow all except some’ elegantly.

Non-monotonicity allows more flexible and expressive security policies
[11,12,10]. The difficulty with non-monotonic trust management systems is that
the systems must have the exact set of credentials from an entity to make a sound
decision. It is hard because of information asymmetry. If a subject knows or can
predict that a certain credential will result in the decrease of its privileges, it may
prefer not to reveal it. A trust management system cannot distinguish whether
the absence of certain credentials is caused by “not having” or “not disclosing”.
To solve this problem, previous studies on non-monotonic trust management
[13,14,15,16] suggest that the system should be able to collect credentials di-
rectly from the credentials issuers rather than only from the subjects. Although
this approach seems to be able to solve the problem, it causes new problems.
One problem is privacy: the issuer could disclose information about the subject,
i.e. the credential, to anyone who wants the credential. It also requires issuers
to be always online, which may not be practical.

To handle non-monotonicity in trust management systems, we present a cryp-
tographic credential verification scheme which guarantees that the trust man-
agement system can identify all the required credentials possessed by the subject
while also providing protecting the subject’s privacy.

2 Problem Definition

Let’s consider a trust management system controlling access to a resource. Let
V be the set of atomic privileges, Cp be the set of all credentials relevant to the
trust decision, the trust policies can be formalized as pol : P(Cp)→ P(V), where
P(Cp) and P(V) are the power sets of Cp and V respectively. Loosely speaking,
this means that given a set of relevant credentials, the trust management system
can decide a set of privileges based on its local trust policies.
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If the policies are monotonic, then we have C1 ⊆ C2→ pol(C1) ⊆ pol(C2) for all
C1, C2 ∈ P(Cp). In contrast, if the policies are non-monotonic, then there exists
C1, C2 ∈ P(Cp) such that C1 ⊆ C2∧ pol(C1) � pol(C2).

One required security property of trust management systems is that the sub-
ject should not receive excessive privileges. In other words, for a subject who has
a set of credentials Cs, the privileges it can get should be bound by pol(Cr) where
Cr = Cs ∩ Cp are the credentials possessed by the subject and required by the
policies (see Fig. 1). It seems trivial since given Cp, for each set of credentials Cs,
there is exactly one Cr. However, in most cases, the system only knows Cs′ which
is a set of credentials collected by it. The policy evaluation is therefore based on
Cr′ = Cs′ ∩Cp rather than Cr. The credentials are digital assertions signed by the
credential issuers and are unforgeable, i.e. Cs′ ⊆ Cs. In consequence, it is clear
that Cr′ ⊆ Cr.

Fig. 1. Credential Sets

In monotonic trust management systems, the required property is preserved in
all situations. Since Cr′ ⊆ Cr, by monotonicity, pol(Cr′) ⊆ pol(Cr) is always true.
But in non-monotonic trust management systems, the potential privileges the
subject can get is bound by

⋃
C

ri′ ∈P(Cr)
pol(Cri′). This means that if the system

cannot identify Cr correctly, the subject may get more privileges than it should.
As a result, credential collection and verification is crucial to non-monotonic
trust management systems.

In monotonic trust management systems, credentials are usually submitted by
the subjects. This is obviously not appropriate in non-monotonic trust manage-
ment systems. A scheme that most non-monotonic trust management systems
use is to actively collect and verify the credentials. For each credential ci ∈ Cp,
the system sends a query to the credential issuer. The issuer returns a positive
reply if it has issued ci to the subject, a negative reply otherwise. If the issuer’s
reply is positive, the system can infer that ci ∈ Cs and in consequence, ci ∈ Cr.
If the reply is negative, then ci ∈ Cp−r, where Cp−r is the set of credentials that
were required by the policies but not possessed by the subject. After receiving
definite replies for all the credentials in Cp, the system identifies the correct set Cr.

The scheme is problematic in the sense that it considers little about the sub-
ject’s privacy. Credentials may contain sensitive information about the subject,
but there is no way to prevent a malicious system from probing the credentials
the subject has, e.g. the system can query about a credential in Cs−r, which is
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not relevant to the trust decision at all. It can be even worse since the query is
open to everyone. Another noticeable defect is that the query may not always
get a definite reply. A query can go unanswered if the issuer is offline. In such
situations, the system cannot verify the possession status of the credential.

In the following sections, we will describe a new credential verification scheme
designed for non-monotonic trust management systems. The scheme allows the
system to identify Cr efficiently and correctly. The scheme also protects the
subject’s privacy. The verification must first be permitted by the subject, and
after the verification, the system knows nothing about the credentials in Cs−r.

3 Credential Verification Scheme

Our credential verification scheme tries to keep a balance between avoiding un-
necessary security breaches caused by lack of information and respecting the
users right of controlling their information. In sections 6 and 6 we will prove
that the scheme is:

– Correct. The scheme can correctly identify all the credentials that the subject
has that are required by the target. And also,

– Privacy-preserving. The verification is controlled by the subject. Without
the permission of the subject, the target cannot learn anything about the
credentials possessed by the subject.

3.1 Overview of the Scheme

There are three roles in our scheme:

– Subjects: The subjects are entities who send access requests and need to be
authorized.

– Targets: The targets are entities who provide resources and make the trust
decisions.

– Credential issuers: Issuers create the credentials, and also credential profiles
(see section 3.2) to allow the targets to identify the credentials possessed by
the subjects.

As described earlier, the aim of a credential verification scheme for non-
monotonic trust management systems is to identify the correct Cr. The tra-
ditional scheme achieves the goal by finding two mutually exclusive credential
sets Cr and Cp−r such that Cp = Cr ∪ Cp−r. This approach relies totally on the
target to verify the credentials. Our approach is different. In our scheme, we let
the subject provide a credential set C′r such that C′r ⊆ Cp and C′r ⊆ Cs. Then
the subject must convince the target that C′r = Cr by proving Cp−r′ ∩ Cs−r′ = ∅,
where Cp−r′ = Cp − C′r, Cs−r′ = Cs − C′r.

To see that this is correct, first let’s assume that when Cp−r′ ∩ Cs−r′ = ∅ ,
C′r �= Cr. Because C′r ⊆ Cp and C′r ⊆ Cs and Cr = Cp ∩ Cs, the only possibility
of C′r �= Cr is C′r ⊂ Cr, therefore we can find a non-empty credential set C′′r such
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that C′′r ∩C′r = ∅ and C′′r ∪C′r = Cr. Then it follows that Cp−r′ ∩Cs−r′ = C′′r , which
contradicts the assumption. So C′r = Cr must be true.

The difficulty with our scheme is how to preserve the privacy of the subject,
namely how to effectively prove Cp−r′∩Cs−r′ = ∅ without letting the target know
any credentials in Cs−r. We address the problem by constructing a cryptographic
bijection mapping ρ : Cs → Es. Es is publicly available to any entity through a
highly available P2P directory service. ρ is constructed using well-defined cryp-
tographic primitives, so Es discloses no information about Cs to the targets. The
subject must prove that for any credential ci ∈ Cp−r′ , ci /∈ ρ−1(Es−r′). Because ρ
is a bijection, so ρ−1(Es−r′) = ρ−1(ρ(Cs−r′)) = Cs−r′ . Therefore the above proof
is equivalent to proving Cp−r′ ∩ Cs−r′ = ∅. The proof is zero-knowledge, thus at
the end, the target can be convinced about the statement but knows nothing
more.

Fig. 2. Overview of our approach

3.2 Architecture

In our scheme, Es is implemented as a credential profile (or profile for simplicity)
which allows targets to verify which credentials the subjects has. Each credential
profile has four basic components. The components are:

– ID Hash: The hash value of the subject’s identity. It can be used to search
all the profiles associated with the identity.

– Profile Entries: Each entry is linked to a credential held by the subject and
contains some encrypted information. The target can verify that the subject
has the linked credential by performing a computation on the entry. Profile
entries are discussed in more detail later.

– Timestamp: The time when this profile was created. It allows entities to
determine which profile is the latest.

– Signature: The digital signature of the issuer for this profile. This signature
is used to ensure that no one can modify the profile after it has been created.
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The profiles are distributed independently of the credentials through a P2P
directory service. The P2P directory service is maintained by the credential
issuers and can be used by any entity. The advantage of the P2P approach is
that each profile can be duplicated and stored in multiple places over a wide
area. Therefore it provides higher availability of the profiles than storing them
in one place.

To ensure that all credential information is preserved in the profile, we use an
“onion” structure for the profile. If the subject has n credentials, its profile has
n + 1 layers. The innermost layer of the profile, layer 0, is the ID hash of the
subject. Each layer i, consists of a profile entry, a timestamp and is wrapped by
an overall signature on the content of layer 0 to layer i. The onion structure is
built up along with the updating process of the subject’s credential set. As shown
in Fig. 3, each time the subject needs a credential, it contacts the credential issuer
(1). The credential issuer generates a credential for the subject, at the same time
it must also create a new profile for the subject. To do so, the credential issuer
first needs to obtain the latest version of the subject’s profile. This can be done
by searching the P2P directory service using the hash value of the subject’s
identity (2). After getting the latest profile (3), the issuer generates a new entry
for the credential it is issuing to the subject and also a timestamp, then appends
them to the old profile. The issuer then signs the new profile and releases it to
the subject (4) with the credential and also to the P2P directory service (5). As
we can see, by using the onion structure, we ensure that the next time that a
credential issuer creates a profile, it cannot modify or remove any content from
the old profile. Suppose it modifies the content in layer k, it would then need to
forge all the signatures from layer k to layer n. We also require the peers in the
P2P directory service to check the contents of a newer versions of a profile with
their local version, and reject them if the checking fails.

P2P
Overlay

Credential
Issuer

Credential
Issuer

Credential
Issuer

Credential
Issuer

Credential
Issuer

Credential
Issuer

subject

(1)

(2)

(3)

(4)

(5)

Fig. 3. Issuing a credential using the P2P directory service
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3.3 Cryptographic Building Blocks

Our scheme is realised by using cryptographic techniques. In this section, we
briefly outline the cryptographic primitives used. In section 4, we will show how
the security of our scheme follows the security properties of the primitives. For
more information about these cryptographic primitives and their formal security
definition, please refer to [17,18,19]. The cryptographic primitives used are:

1. A commitment scheme, Commit : {0, 1}n × {0, 1}k → {0, 1}l. It is a two-
phase protocol between two parties, the committer and the receiver. In the
first phase (the commitment phase), the committer commits to r ∈ {0, 1}n

by choosing a Secret s ∈ {0, 1}k to generate a commitment Commits(r)
through a polynomial time algorithm which binds r to Commits(r), i.e. it’s
infeasible for the receiver to find r′ and s′ which produce the same com-
mitment Commits′(r′) = Commits(r) (this is the binding property). The
committer sends Commits(r) to the receiver. Given only the commitment,
it’s infeasible for the receiver to compute the committed string r (this is the
hiding property). In the second phase (the open phase), the committer re-
veals r and s to the receiver. Now the receiver checks whether they are valid
against the commitment, if the receiver can compute Commits(r) from r
and s, then it is convinced that r was indeed committed by the committer
in the first phase, otherwise it rejects r.

2. Zero-Knowledge Proof Protocols. Let P , V be two Interactive Turing Ma-
chines, L be a language over {0, 1}∗, the goal of a zero-knowledge proof
protocol (P, V ) is to allow the prover P to prove to the verifier V that a
given x belongs to language L, without disclosing any other information.
In the following sections, we will use the notion introduced in [20] for the
zero-knowledge proofs. The convention is that the elements listed in the
round brackets before “:” denote the knowledge to be proved to the verifier
and all other parameters are known to the verifier. For example: PK{(a, b) :
y = gahb} means a zero-knowledge proof of integers a, b such that y = gahb

holds and y, g, h are known to the verifier.

3.4 Profile Entry

Profile entries (or entries for simplicity) can be used by the target to verify
that the subject possesses the corresponding credential. Entries are generated
by using cryptographic techniques so that one cannot learn anything about the
credentials from the entries, unless following the credential verification protocol.

We assume that there is a common vocabulary for specifying credentials which
is used by all the entities in the system. We also assume that each credential has
a credential name, e.g. student, member etc.. An entry is linked to a credential
whose name is c and generated by the credential issuer when it issues the cre-
dential. To generate an entry, the creator (the credential issuer) first creates a
commitment for the credential name Commits(c). The secret s for opening the
commitment will be sent to the subject through a secure channel. The entry is a
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tuple (Commits(c), Sig(cred), exp time). Sig(cred) is the signature of the linked
credential and is used to associate the entry with the real credential. exp time
is the expiration time of the credential. An entry can be revoked implicitly or
explicitly. Each entry contains the expiration time of the linked credential. The
entry becomes invalid when the credential expires. When a credential is revoked
before expiring, the credential issuer puts the signature of the credential into a
revocation list, and publishes it into the P2P network.

We use a modified Pedersen Commitment Scheme which is slightly different
from the standard one.

Setup. The issuer chooses two large prime numbers p and q such that q divides
p − 1. Let g be a generator of Gq, the unique order-q subgroup of Z∗

p. The
issuer chooses x uniformly randomly from Zq and computes h = (gx mod p).
The issuer keeps the value x secret and makes the values p, q, g, h public.

Commit. The issuer chooses s uniformly randomly from Zq and computes the
commitment Commits(c) = gchs.

There are three parties involved: a committer (the issuer), a prover (the sub-
ject) and a receiver(the target). The issuer generates the commitment to c and
lets the subject know the secret for opening the commitment. This is because the
binding property can only guarantee that after generating the commitment, the
committer cannot change what it committed to; however, it provides no guaran-
tee on what can be committed to. If we let the subject generate the commitment,
it could commit to another credential name c′ rather than c and it could take
advantage from this, i.e. to hide the credential in order to gain excessive privi-
leges. So we let a trusted third party (the issuer) generate the commitment to
ensure that the commitment is indeed a commitment to c. Note that the subject
does not need to open the commitment. What the subject needs to do is to use
the commitment and the secret s to convince the target by a zero-knowledge
proof protocol that the linked credential is not required.

3.5 Credential Verification Protocol

The protocol is described in the following and shown in a message sequence chart
in Fig. 4. Note: any party can terminate the process if a malicious behavior is
detected during the protocol. If the protocol terminates prematurely, it will
output “⊥”.

1. The target receives a request from the subject.
2. The target decides the credentials that need to be checked according to its

local policies, i.e. Cp, and lets the subject know Cp.
3. The subject decides Cr = Cp ∩ Cs. If there is any credential in Cr which is

sensitive and the subject does not want the target to know, it can choose to
refuse and terminate the process. Otherwise, the subject proceeds. Note: as
we have mentioned before, Cp is the set of all the credentials the target needs
to check according to its local policies, not the the credentials the subject
must have, so even if the subject does not have all the credentials requested,
it can still choose to proceed.
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Fig. 4. Message sequence chart of the protocol for credential verification

4. If the subject chooses to proceed, it sends C′r = Cr to the target. The target
checks the validity of the credentials in C′r. If C′r contains all the creden-
tials that appear in Cp, i.e. C′r = Cp, the protocol terminates and outputs
C′r, otherwise the target creates the set Cp−r′ = Cp − C′r and the protocol
continues.

5. The target obtains the subject’s latest credential profile P from the P2P
directory service.

6. The target creates a set containing all the valid entries extracted from P .
Valid means not expired or revoked. The set is effectively equal to Es. For
each valid entry (Commitsj (cj), Sig(credj), exp timej), if the target can find
a credential in C′r whose signature is Sig(credj), then this entry is removed
from Es. At the end, the target will have the set Es−r′ .

7. For each entry (Commitsk
(ck), Sig(credk), exp timek) in Es−r′ , the subject

must run a zero-knowledge proof protocol as described in section 3.6 to
convince the target that there is no credential in Cp−r′ whose name is ck.
The target will then know that the credential is not required by its policies,
but nothing more than that.

8. The credential verification protocol completes by outputting C′r.

3.6 Zero-Knowledge Proof Protocol

The zero-knowledge proof protocol that we use in step 7 above is adapted from
[21]. The original protocol is a two-party secure computation protocol used to
compare two integers. We simplify the settings because there is only one secure
input, which is the name of the credential held by the subject.

The aim of this protocol is: given public security parameters p, q, g, h, a com-
mitment gchs as described in 3.4, and a different credential name c′ ∈ Zq, the
subject must prove c′ �= c to the target.

We use two well-defined sub-protocols in the proof. The first one is Schnorr’s
protocol [22] PK{(x) : y = gx} which proves knowledge of a discrete log-
arithm. The other is Okamoto’s protocol [23] PK{(a, b) : y = ga

1g
b
2} which

proves knowledge of how to open a commitment. It can be easily extended to
PK{(a, b) : (x = ga

1 ) ∧ (y = ga
2g

b
3)}. The zero-knowledge proof protocol is:
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1. The subject uniformly randomly chooses x ∈ Zq, x is kept secret. It computes
h2 = hx and sends it to the target. Then it proves to the target that it knows
x by PK{(x) : h2 = hx}.

2. The subject computes Ps = hs
2 where s is the secret to open the commitment

Commits(c) = gchs and sends it to the target. Then it proves to the target
that it knows c, s and that it used the same s in computing hs

2 as in computing
gchs by PK{(c, s) : (Ps = hs

2) ∧ (Commits(c) = gchs)}.
3. The target also selects a random element s′ ∈ Zq and computes Ps′ = hs′

2

and Commits′(c′) = gc′
hs′

. The target sends Commits′(c′) to the subject
as a challenge.

4. The subject computes Q = ( Commits(c)
Commits′ (c′) )

x, sends the result to the target,

and proves PK{(x) : h2 = hx ∧Q = ( Commits(c)
Commits′ (c′) )

x}.
5. Finally, the target checks whether Q �= Ps

Ps′ holds. If so, then c′ �= c

We have implemented a proof-of-concept prototype in Java 1.5 and done a
preliminary performance evaluation. The evaluation was done on a Pentium IV
3.2 GHz (dual core) desktop with 1 GB memory. The execution of the zero-
knowledge protocol takes about 130 milliseconds. The result was obtained by
averaging the time for 1000 executions. The performance can be further improved
by optimizing the code.

4 Security Analysis

In our credential verification protocol, the security requirements of the parties
are different. For the subject, the requirement is for the scheme to prevent a
malicious target from learning excessive information about its credentials. For
the target, the requirement is for the scheme to correctly identify the subject’s
credentials and prevent a malicious subject from cheating about the credentials
it has.

To reflect the requirements of both parties, we define the security of our
protocol as follows:

1. Correctness. Given the target follows the protocol, if the subject sends
C′r = Cr to the target, then at the end, the protocol should output Cr

with overwhelming probability; otherwise, the protocol should output⊥ with
overwhelming probability.

2. Privacy-preserving. Given the subject follows the protocol, the target should
learn either nothing or the set of credentials Cr. In the latter case, it should
be computationally infeasible for a malicious target to learn any credential
in Cs−r.

The proofs can be found in the appendix.

5 Related Work

There are few non-monotonic trust management systems. REFEREE [13] is
a trust management system for web applications. It uses PICS labels [24] as



Privacy-Preserving Credential Verification 181

credentials and assumes they can be obtained from authorities’ websites. The sys-
tem is responsible for collecting all the credentials, therefore it is possible to gather
complete information. TPL [15] allows negative credentials which are interpreted
as suggestions of “not to trust”. In TPL, positive credentials are submitted by the
subject, and the negative credentials are collected by the system. [25] discusses
non-monotonic access policies in trust negotiation and argues that to avoid rely-
ing on outside information, the system should only have non-monotonic policies
according to its local information and the credentials submitted to the system
should be monotonic. A recent study [16] adds a restricted form of negation to
the standard RT trust management language. But as we have mentioned in sec-
tion 1, none of these systems address privacy or availability issues.

6 Conclusion and Future Work

In this paper we discussed the benefits and problems of non-monotonic trust
management systems. To handle non-monotonicity, we developed a credential
verification scheme which guarantees that the system can identify all the re-
quired credentials possessed by the subject while also protecting the subject’s
privacy. The scheme is implemented by using several cryptographic primitives.
We also analyzed our scheme and proved that with correct construction and
certain cryptographic assumptions, our scheme is secure.

One aspect of our future work is to allow more expressive trust policies. Cur-
rently, our scheme does not support wildcard credential names in policies, for
example, the policy “a subject can access the patient’s medical record if it has
a doctor credential signed by any hospital”. At present, such policies cannot be
handled directly. The example has to be translated into verifying the subject has
at least one credential in the list of all doctor credentials signed by a hospital.
This approach is static and also increases the computation time because in the
worst case, all the credential names that appear in the list need to be verified.

We will also investigate using the cryptographic credential verification scheme
in automated trust negotiation [26]. Automated trust negotiation is a promising
approach to build trust management systems in a privacy-preserving way. Dis-
closure policies are established to regulate the disclosure of sensitive credentials
and policies. Traditional trust negotiation systems disclose the credentials incre-
mentally, therefore must be monotonic. They are also subject to policy cycles
where a negotiator A has a disclosure policy that requires credential c1 from
another negotiator B before disclosing credential c2 while B has a disclosure
policy that requires credential c2 from A before disclosing credential c1. When
there is a policy cycle, the negotiation fails. In [27], the authors propose the Re-
verse Eager (RE) trust negotiation strategy in which two negotiators start from
the maximum credentials sets and in each iteration prune the credentials sets by
removing the unusable credentials according to their own policies. The RE strat-
egy is cycle-tolerant which means even with policy cycles, the negotiation can
still succeed. But the RE strategy does not support non-monotonic policies and
the trust negotiation protocol requires intensive computation. We are looking at
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developing a more efficient protocol using our credential verification scheme and
the RE strategy for non-monotonic and cycle-tolerant trust negotiation.
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Appendix

Security Proof of the Zero-Knowledge Proof Protocol

Lemma 1. The protocol in section 3.6 is complete: if c′ �= c, then Pr[(P, V )(c′ �=
c) = 1] = 1.

Proof. The zero-knowledge proof convinces the verifier by comparing Q =
( Commits(c)

Commits′(c′) )
x= ( gchs

gc′ hs′ )x = g(c−c′)xh(s−s′)x and Ps

Ps′ = hsx

hs′x = h(s−s′)x where c



184 C. Dong, G. Russello, and N. Dulay

is a credential name and c′ is another credential name. Q �= Ps

Ps′ holds only when
c′ �= c, therefore the protocol is complete.

Lemma 2. The protocol in section 3.6 is sound: if c′ = c, then ∀P ′ Pr[(P ′, V )
(c′ �= c) = 1] ≤ δ, where δ is a negligible probability.

Proof. If a malicious prover can manipulate Q,Ps, Ps′ , then it can control the
result of the zero-knowledge proof protocol. For example, if the prover can con-
struct Ps′ = hs′′x using s′′ �= s′, then Q �= Ps

Ps′ even c = c′. But a cheating prover
can succeed with only a negligible probability. Firstly, hx is revealed to the veri-
fier and proved to be constructed correctly in step 1 using Schnorr’s protocol. In
step 2, the prover must prove it uses the same s in computing Ps = (hx)s as in
computing gchs using the extended Okamoto protocol. Commits(c) is known by
the target and Commits′(c′) is computed by the target, and in step 5, the prover
must prove that it uses the same x in computing hx and Q = ( Commits(c)

Commits′ (c′) )
x

using Schnorr’s protocol. To manipulate hx, Ps and Q, a malicious prover must
break Schnorr’s protocol or the extended Okamoto protocol. But in the two sub-
protocols, the challenges are chosen randomly from [1, 2t], so the probability of
successful cheating is at most 2−t. When t is sufficiently large, the probability
is negligible. Therefore hx, Q and Ps must be constructed correctly with a over-
whelming probability. The prover cannot manipulate Ps′ = (hx)s′

because s′ is
selected by the verifier. So the protocol is sound.

Lemma 3. Under the Discrete Logarithm Assumption and the Decisional Diffie-
Hellman Assumption, the protocol in section 3.6 is zero-knowledge.

Proof. The execution of the protocol produces a view in the form {h2 = hx, Ps =
hs

2, s
′, Commits′(c′), Q = ( Commits(c)

Commits′(c′) )
x}. Following the definition of zero-

knowledge, we need to show that there exists a probabilistic polynomial time
simulator M∗ which can produce a simulation of a view. Note that because the
simulator of the main protocol can call the simulators of the sub-protocols, and
because the sub-protocols have been proven to be zero-knowledge, we omit views
of the sub-protocols here.

We can construct M∗ as follows:

1. The public input is p, q, g, h, gchs, c′.
2. M∗ randomly chooses x∗ ∈ Zq, and compute h∗2 = hx∗

.
3. M∗ randomly chooses s′∗ ∈ Zq, and computes P ∗

s′ = (h∗2)
s′∗

and Commits′

(c′)∗ = gc′
hs′∗

.
4. M∗ computes Q∗ = ( Commits(c)

Commits′(c′)∗ )x∗
.

5. M∗ chooses s∗ such that (h∗2)
s∗ �= Q∗P ∗

s′ , then let P ∗
s = (h∗2)

s∗
.

6. M∗ outputs {h∗2, P ∗
s , s

′∗, Commits′(c′)∗, Q∗}
It is easy to see that under the Discrete Logarithm Assumption and the De-
cisional Diffie-Hellman Assumption, the simulation is computationally indis-
tinguishable from a view produced in the protocol. So our protocol is zero-
knowledge.
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Proof of Correctness of Credential Verification Protocol

Theorem 1. The credential verification protocol is correct.

Proof. Firstly we need to prove that in the protocol, if the subject sends C′r = Cr

to the target, then at the end, the protocol should output Cr with overwhelming
probability. It is clear that in step 4, if an honest subject sends C′r = Cr to the
target, then there are two cases to consider:

Case 1: Cr = Cp. In this case, the target will detect Cr′ = Cp, and will terminate
the protocol and output Cr′ , which equals Cr.

Case 2 Cr ⊂ Cp. In this case, the target has Cp−r′ = Cp − Cr′ = Cp − Cr = Cp−r

in step 4. In step 6 the target will have Es−r′ = ρ(Cs − Cr′) = ρ(Cs − Cr) =
ρ(Cs−r). We have proven that the zero-knowledge proof protocol is complete
in Lemma 1, therefore in step 7, the subject can prove that for each entry
(Commitsk

(ck), Sig(credk), exp timek) in Es−r′ , that there is no credential
in Cp−r′ whose name is ck. Then in step 8, the protocol outputs Cr′ , which
equals Cr.

Next we will prove that if the subject sends C′r �= Cr to the target, then at the
end, the protocol should output ⊥ with overwhelming probability.

In step 4, if a malicious subject sends C′r �= Cr to the target, there are also
two cases to consider:

Case 1: Cr′ � Cr. In this case, there exists at least one credential c such that
c ∈ Cr′ and c ∈ Cs−r. If Cr′ = Cr, then all the credentials in Cr′ must also
be in Cp, but now c is not in Cp because it is in Cs−r. Therefore the target
can detect C′r �= Cr easily. The target will then terminate the protocol and
output ⊥.

Case 2: Cr′ ⊂ Cr. In this case, there exists a non-empty credential set C′′r such
that C′′r ∩C′r = ∅ and C′′r ∪C′r = Cr. In step 4, the target has Cp−r′ = Cp−r∪C′′r
and in step 6, the resulting set Es−r′ = ρ(Cs−r ∪ C′′r ). Because ρ−1(Es−r′) ∩
Cp−r′ = C′′r , for a credential in C′′r whose name is ck, its entry (Commitsk

(ck),
Sig(credk), exp timek) can be found in Es−r′ . We have proven that the the
zero-knowledge proof protocol is sound in Lemma 2, therefore in step 7, the
subject cannot convince the target. The target will terminate the protocol
and output ⊥ with overwhelming probability.

Proof of Privacy-Preservation of Credential Verification Protocol

Now we prove that the subject’s privacy is preserved by the protocol. We first
need to show that the credential profile is privacy-preserving.

Lemma 4. Given only the credential profile, the target learns nothing about the
credential possessed by the subject.

Proof. A credential profile contains profile entries. Let’s look at the structure
of a profile entry. Each entry is a tuple (Commits(c), Sig(cred), exp time).
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Sig(cred) discloses no information because the signature is generated from the
hash value of the credential content. As the hash function is not invertible, no
one can learn anything about the credential by looking at the signature. The
commitment scheme we use is unconditionally hiding, which means even with
unbounded computational power, the possibility of an adversary finding the com-
mitted value c is still negligible because for any c ∈ Zq and uniformly randomly
chosen s ∈ Zq, Commits(c) is uniformly distributed in Gq [28]. So by looking
at the commitment, one can learn nothing about c. It is impossible to infer the
credential from exp time. Overall, the profile entries leaks no information about
the credential.

For the other parts in the profile: an adversary cannot learn any information
about the credentials from the signatures, and ID hash and timestamps contain
no information about the credentials.

Therefore, given only the credential profile, the target learns nothing about
the credentials possessed by the subject.

Theorem 2. The credential verification protocol is privacy-preserving.

Proof. The credential profile is publically available in the P2P directory service
before entering the protocol, so is available to the target. But by Lemma 4, the
target learns nothing about the subject’s credentials by looking at the profile.

In steps 1-3, the subject discloses no additional information about its creden-
tials, so the target still knows nothing. If the subject terminates in step 3, then
the target knows nothing about the credentials in Cs.

If the subject decides to proceed, then in step 4, the subject discloses Cr to
the target. The target knows all the credentials in Cr, but nothing about the
credentials in Cs−r. In step 7, the subject needs to run the protocol described in
section 3.6 with the target. We have shown that under the Discrete Logarithm
Assumption and the Decisional Diffie-Hellman Assumption, that the protocol is
zero-knowledge in Lemma 3, so for any credential c ∈ Cs−r, it is computationally
infeasible for the target to learn any information other than the fact that c /∈ Cr.
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1 Introduction

There are many definitions of covert channels [3,9]. In this work we chose the
following definition. Covert channel allows to hide information transmission from
a warden with a given set of resources. This definition deals with only one secrecy
parameter which is required for the data hiding. We say that a data hiding
scheme is good if

– information transmission can not be detected by the warden with a given
set of resources;

– bandwidth of the covert channel can not be done less than the given bound
with the help of transformations from the given class. In particular, covert
information transmission can not be destroyed with the help of any method
from the given class.

Every covert channel is based on an interaction between the sender and the
receiver of the covert data.

Unlike the classification of covert channels given in TCSEC [4] and its inter-
pretations we consider three types of covert channels:

– storage covert channels;
– timing covert channels;
– statistical covert channels.
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For information transmission in statistical covert channels a modulation of
parameters of probability distributions of some random variables or some random
processes are used. Probabilistic methods for secrecy analysis of storage channels
or timing channels can also be used. For example the Shannon’s methodology
[13] for secrecy analysis can be applied.

In this work we investigate the concept of a covert channel invisibility for
the warden. In earlier works [5,6,8] we used the Shannon’s approach to prove
an absolute secrecy of some data hiding methods. In that works we discussed
the indistinguishability between a legal information transmission and a covert
transmission. These and later works have allowed to formulate some common
principles for estimation of secrecy (invisibility) of covert channels. There are
two principles.

– The first principle maintains that a number of places in which we can hide
information should be large. The warden should not be able to analyse all
possible places for information hiding.

– The second principle maintains that the place with hidden information can-
not be distinguished from the same place when it isn’t used for the hidden
information transmission.

These principles are difficult to realize. Traditionally, [11] a data hiding method
is associated only with one method of embedding of covert information into a
container. The simultaneous usage of many data hiding methods is difficult in
this case. The first and second principles are tightly bound. If the method of
data hiding is known, it is very difficult or almost impossible to eliminate all
signs of hidden information. This elimination becomes more difficult when the
receiver should be able to reconstruct the hidden information.

On the basis of these principles we can calculate covert channel secrecy (invis-
ibility) as an estimation of labor that is needed for the warden to detect traces of
the hidden information transmission. When these principles are used the warden
has to analyse traces of hidden information in a lot of places and a lot of false
alarms follow from the well known effect in mathematical statistics. The large
deviations produce a large number of false places which are detected as places
with hidden information. Similar effect appears in the problem of intrusion de-
tection when a number of false detected attacks is so large that true attacks
cannot be identified [1,2,7].

In statistical covert channels the unique method of covert channel detection
is a statistical method. A set of places for information hiding defines a set of
alternatives which the warden should test versus the main hypothesis that there
is no hidden information transmission. At the same time the information receiver
has an advantage over the warden because he exactly knows the alternative or the
set of alternatives used by the sender of message for information transmission.

The main problem for the estimation of secrecy (invisibility) under statistical
method usage is uncertainty of probability models used for statistical decision. In
contrast to other statistical methods implementations the estimation of secrecy
essentially depends on accuracy of definition of random processes which are
modulated by hidden information. Inadequacy of such description can result
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in the simple detectability of the covert channel if the warden has more exact
model of the process without embedded hidden information. So the proof of
invisibility of a statistical covert channel should be carried out in a wide class of
probability models of sender and receiver interaction. Therefore we should make
assertions of the impossibility of a detection of hidden transmission in a class of
all distributions which satisfy the given conditions.

The moment of the warden’s decision about the presence of a hidden infor-
mation transmission cannot be determined a priori. Such a decision may depend
upon various organizational factors. For example, we need a quick decision be-
cause the cryptographical key of low length can be transmitted through the
covert channel. Or the warden may allow the hidden transmission to last very
long. In the case of any covert channel detection the system can be modified to
prevent the further interaction between sender and the receiver of the hidden
information. Then for the estimation of covert channel secrecy we should con-
sider a sequences of all first parts (from a certain moment) of sender and receiver
interaction.

The proof of impossibility of a statistical covert channel detection is a serious
problem. First of all it relates to the fact that all statistical procedures give
the answer ”may be” and almost never give answers ”yes” or ”no”. The second
reason consists of the fact that there is no the best (in all senses) statistical
decision if we consider composite alternatives.

That is why we come to consider sequences of decision procedures in the
conditions of weak determination of probabilistic models of sender and receiver
interaction and hidden information transmission. As a result of our analysis we
should get answers about ”secrecy” or ”unsecrecy” of the covert channel. The
answer ”secrecy” means that the warden has no statistical procedures for the
detection of any covert interaction between the sender and the receiver using
the observation of such interaction of an arbitrary length. So we need to use
the conception of consistent test sequence [10]. The proof of the fact that there
is no consistent test sequence means that the warden has no asymptotically
good statistical decision rules for detection of covert channels with the arbitrary
length of observation of interaction between the parties. If there is such statistical
procedure, it particularly means that there is a consistent procedure sequence
of decision making.

The purpose of this work is the proof of nonexistence of consistent test se-
quence under sufficiently general conditions in considered probability models.
In section 2 we describe the model and prove sufficient conditions in consid-
ered class of models. In section 3 we give an example with the interpretation of
the obtained decision for a certain model of covert channels. In conclusion we
describe the future work directions in this area.

2 Mathematical Model

As in [7] we consider two computer systems KA and KB, connected by the
link S. Let X, |X | < ∞, - be a set of all possible messages, which can be
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sent from KA to KB through S. KA sends to KB the sequence of messages
from X as an unidirectional stream in S without feedback. We consider the
discrete time and points of time are numbered by the natural numbers N. All
statistical problems, solved in view of transmission of a sequence of messages
from KA to KB through the link S, are based on data handling during finite
time interval. These time intervals may be wide and asymptotical properties of
decision functions are analysed. Therefore, we describe the information stream
from KA to KB with a random infinite sequence of messages taken from X.
Denote a space of messages sequences by

X∞ = {α = (xi1 , xi2 , ..., xin , ...), xin ∈ X, n = 1, 2, ...}.

Let (xi1 , xi2 , ..., xin) × X∞, xik
∈ X, n ∈ N , be an elementary cylindrical set

in X∞. Let A be a σ-algebra, which is generated by all cylindrical sets. Assume
that probabilities on elementary cylindrical sets

{P0, 1,...,n(x1, ..., xn)} (1)

generate a consistent family of finite-dimensional distributions. Then the only
probability measure P0 on the measurable space (X∞,A) is generated by (1).
This measure describes the normal interaction of the systemKA with the system
KB. Assume that hardware/software agent KA′ in computer system KA tries
to send secretly a message to hardware/software agent KB′ in KB through
S. They need a covert channel. We characterize the transmission from KA′ to
KB′ with a consistent family of finite-dimensional distributions generated by
probabilities on elementary cylindrical sets

{P1, 1,...,n(x1, ..., xn)}. (2)

This family determines the only probability measure P1 on the space (X∞,A).
To detect a signal from KA′ the agentKB′ should test a hypothesisH(n)

0 : P0, n,
where P0, n = P0, 1,...,n versus an alternativeH(n)

1 : P1, n, where P1, n = P1, 1,...,n.
For every n there is the best test (in accordance with lemma Neyman-Pearson).

Assume that a sequence of messages from KA to KB is observed by the
warden U . He should solve the problem if the sequence of messages corresponds
to the normal behavior of the system or there is a signal from KA′ to KB′ in
this sequence. The warden U knows the distributions P0, n, but he cannot know
distributions P1, n. In order to describe the wardens’s problem let us define a set
of the alternatives H(n)

11 instead of simple alternativeH(n)
1 . The set of alternative

is defined by the set of consistent distributions:

{P1, θ, 1,...,n(x1, ..., xn), θ ∈ Θ}. (3)

For all θ ∈ Θ there is the only probability measure P1, θ on the space (X∞,A).
Then for all θ ∈ Θ, P1, θ, 1,...,n = P1, θ, n and P1, θ = P1 for some θ ∈ Θ. The
warden’s capability to reveal a transmission of a signal from KA′ to KB′ will be
investigated in the terms of asymptotic properties of test sequences for testing
H

(n)
0 versus alternatives H(n)

11 , n = 1, 2, ....
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Let us define these properties for the test sequences [10]. Denote by Sn, n =
1, 2, ..., a sequence of critical sets for tests Tn, n = 1, 2, ..., testing H

(n)
0 versus

alternatives H(n)
11 . Corresponding significance levels are denoted αn, n = 1, 2, ...,

and Wn(θ) are power functions of these tests.

Definition 1. Test sequence Tn, n = 1, 2, ..., is called consistent iff αn → 0, n→
∞, for every θ ∈ Θ Wn(θ) → 1, n→∞,.

Consider a special case for alternatives. Let Θ = X∞ and P1, x({x}) = 1, x ∈
X∞. That means that any chosen sequence may be a covert information trans-
mission to KB′.

Theorem. In the considered class of alternatives there is no consistent test
sequence for testing H(n)

0 versus alternatives H(n)
11 , n = 1, 2, ..., for all measures

P0.

Proof. First of all, consider the case when for every x ∈ X∞ : P0({x}) = 0.
Suppose that there exists a consistent test sequence for testing H

(n)
0 versus

alternatives H(n)
11 . Then Sn, n = 1, 2, ..., – be the sequence of corresponded

critical sets. By the definition of consistency

P0, n(Sn) → 0, n→∞,

P1, θ, n(Sn) → 1, n→∞, ∀ θ ∈ X∞. (4)

From the definitions P0 and P1, θ it follows that

P0(Sn ×X∞)→ 0, n→∞,

P1, θ(Sn ×X∞)→ 1, n→∞, ∀ θ ∈ X∞. (5)

Lemma 1. For every x ∈ X∞ there exists N such, that ∀n ≥ N :

x ∈ Sn ×X∞.

Proof. Let there exists x ∈ X∞ such, that for every N there exists n ≥ N that
x∈ Sn ×X∞. Then we can define a subsequence Snk

such that for all k:

x∈Snk
×X∞.

But then
P1, x(Snk

×X∞) → 0, k →∞,

that contradicts (5). Lemma is proved.

Lemma 2 ∞⋃
n=1

∞⋂
k=n

Sk ×X∞ =
∞⋂

n=1

∞⋃
k=n

Sk ×X∞ = X∞.

Proof. Let x ∈ X∞, then from lemma 1 it follows that there exists N such, that
∀k ≥ N :

x ∈ Sk ×X∞.
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Therefore

x ∈
∞⋂

k=N

Sk ×X∞

and

x ∈
∞⋃

n=1

∞⋂
k=n

Sk ×X∞.

Hence ∞⋃
n=1

∞⋂
k=n

Sk ×X∞ ⊇ X∞.

From lemma 1 it follows that for every N there exists k ≥ N such that

x ∈ Sk ×X∞.

From here for all n

x ∈
∞⋃

k=n

Sk ×X∞.

So

x ∈
∞⋂

n=1

∞⋃
k=n

Sk ×X∞.

Then ∞⋂
n=1

∞⋃
k=n

Sk ×X∞ ⊇ X∞.

Then it follows that

∞⋃
n=1

∞⋂
k=n

Sk ×X∞ =
∞⋂

n=1

∞⋃
k=n

Sk ×X∞ = X∞.

Lemma is proved.
Let’s consider the probability

P0(
∞⋃

n=1

∞⋂
k=n

Sk ×X∞).

Using lemma 2 we get

P0(
∞⋃

n=1

∞⋂
k=n

Sk ×X∞) = lim
n→∞P0(

∞⋂
k=n

Sk ×X∞) = P0(X∞) = 1. (6)

Since for all n ∞⋂
k=n

Sk ×X∞ ⊂ Sn ×X∞,



Covert Channel Invisibility Theorem 193

then for all n

P0(
∞⋂

k=n

Sk ×X∞) ≤ P0(Sn ×X∞).

Passing on to limit by n, we carry out

lim
n→∞P0(

∞⋂
k=n

Sk ×X∞) ≤ lim
n→∞P0(Sn ×X∞).

But then from (6) it follows that

lim
n→∞P0(Sn ×X∞) ≥ 1.

This contradicts to (5).
Let’s consider the case when there exists x ∈ X∞ that

P0({x}) > 0.

Then for all consistent test sequence with the critical sets S1, S2, ..., Sn, ..., there
exists N , that for all n ≥ N it follows that x∈Sn. If we assume the existence of
sequence n1, n2, ..., nk, ..., such that x ∈ Snk

for all k, then

P0(Snk
×X∞) ≥ P0({x}) > 0,

that contradicts to the condition

lim
n→∞P0(Sn) = 0.

If x∈Sn for all n ≥ N , then

P1, x(Sn ×X∞) = 0,

that contradicts to the condition of consistency. Theorem is proved.

Corollary 1. Let the family of probability measures in Hn
11 includes the family

{P1, θ, θ ∈ X∞} such that ∀θ ∈ X∞ it follows that P1, θ({θ}) = 1. Then there
is no consistent test sequence for testing Hn

0 versus Hn
11, n = 1, 2, ....

Corollary 2. Let for ∀x ∈ X∞ the probability P0({x}) = 0, and the hypothesis
Hn

11 consists of all measures which are perpendicular to P0 [12]. Then there is
no consistent test sequence for testing hypothesis Hn

0 versus Hn
11, n = 1, 2, ....

3 The Example

Let a sequence of messages from KA to KB be formed outside of agent KA′ at-
tainability. Let intervals between messages can be 0 or 1. Suppose that lengths
of intervals are independent random equiprobable variables. Their values are
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distributed with the probabilities 1
2 . Let us add intervals 0 and 1 to the set of

possible messages X . The new set of messages denote Y . Then for all measures
on the sequences of messages of X the probability of each sequence of messages
from the new set Y equals to zero. In this case we consider probability measures
only on the sequences of intervals between the messages from X . Furthermore
binary sequence of the intervals between messages may be considered as a de-
composition of a number from [0; 1] into the binary fraction. In this case the
sequence of intervals corresponds a random number between 0 and 1. Then in-
duced distribution on the set of numbers from the segment [0; 1] is a uniform
distribution. If the agent KA′ can choose the lengthes of the intervals between
the messages of X then every chosen sequence of intervals may be considered
as a covert message of the agent KA′ transmitted to the agent KB′. But it is
clear that if the agent KA′ has chosen a sequence of only zeros then the warden
using the test based on the deviation of relative frequencies of units from 1

2 gets
a consistent test sequence for Hn

0 : P0, n, where P0, n is a uniform distribution of
intervals between the messages from X , versus alternative Hn

1 : P1, 0, n, where
0 is a null sequence of such intervals.

While considering this example an illusion of contradiction with the proved
theorem can appear. However this is not the case. The theorem asserts that there
is no consistent test sequence versus all alternatives which are described by a
singular distribution on every element of considered space. This doesn’t mean
that there is no consistent test sequence versus the part of such alternatives, for
example, versus the given fixed alternative.

Then it follows that not all alternatives influence equally on impossibility of
consistent test sequence construction. Therefore the arbitrary sequence which is
chosen as a covert signal is not always convenient even if there is no consistent
test sequence in the given class of alternatives. The absence of consistent test
sequence means that for all methods of testing there exists a sequence of messages
produced in accordance with the measure P0, n, but the warden has no assurance
that he is not swindled.

Then there is a question about the difference between the two situations.
The first situation produces the warden’s uncertainty in the case of existence
of consistent test sequence without knowledge of n when the power of test is
sufficiently closed to 1. The second situation is the case when there is some
alternative for which the power of test does not tend to 1 at all. These two cases
have the principal difference. In the first case if the consistent test sequence
exists then there exists the constructive procedure to choose the sequence of
such critical sets Sn for which the power of test will sooner or later become
sufficiently close to 1 for every alternative. In the second case such sequence of
critical sets doesn’t exist in principle. It means that in the first case the warden
should try to find consistent test sequence for covert channel detection but in
the second case he has no reason to do this. At the same time in the example for
any fixed alternative under the theorem condition such consistent test sequence
can be constructed.
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Let’s stand in the position of an adversary and try to use these results for
construction of a covert channel. For this purpose the adversary must use the
same reasonings as in the warden’s determination of a covert transmission.

In our example there exists a lot of sequences that can not be separated
statistically from equiprobable sequences. All such sequences are acceptable to
be chosen as a signal transmitted through the covert channel.

One of the methods of constructing such an invisible sequence is the selection
of the same intervals between the messages as were used for the legal message
transmitting from KA to KB. Then the warden who does no remember such
sequences can not detect this signal because all known to him differences don’t
work in this case.

4 Conclusion

Provable secrecy of a statistical covert channel follows from nonexistence of
consistent test sequences. That is why we investigate sufficient conditions for
nonexistence of consistent test sequences. The result should not depend on cer-
tain probability distributions because the warden can know the model of normal
behavior better than an adversary. The better knowledge of the model follows
the better statistical decision.

In the space of infinite sequences we have found such sufficient conditions.
These conditions can be checked on practice because very often it is possible to
prove that the probability of every possible sequence equals to zero.

If we suppose that every sequence can be chosen as a signal then the warden
has to possess a sequence of tests for detection of any covert signal. An adversary
can make a mistake if he chooses a covert signal randomly, for example, as a point
distributed uniformly in the segment [0; 1].

The previous example shows that in the case of absence of consistent test
sequence we should not use all possible alternatives as covert signals. There
should exist a certain infinite set of alternatives that every infinite subset of this
set cannot be separated by a consistent test sequence from P0, n, n = 1, 2, .... A
signal chosen from this set cannot compromise the covert channel. The problem
is to define such a set.

There are more problems that are to be solved during the work on this theory.
As we defined before the secrecy of covert channel can be estimated with as a
number of places for information hiding. It is very interesting to research a
connection between the increasing the number of places for data hiding and the
properties of probability measures P0 and P1, θ, θ ∈ Θ. We suppose, that the
high increase of the number of places for hiding follows that a lot of sequences
have probability equals to zero.

It is interesting to find sufficient conditions of nonexistence of consistent test
sequences in terms of finite dimensional distributions.

The warden can use many tests for analysis of the sequence of messages. The
problem is to prove that he cannot increase his ability to detect a covert channel
in the case when he uses many tests and there is no consistent test sequence.
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We have considered the problem of covert channel invisibility when its band-
width is minimal. But the conditions of invisibility can be different if the band-
width of the covert channel should be more then a predefined limit.
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Abstract. One of topical tasks of policy-based security management is check-
ing that the security policy stated in organization corresponds to its implementa-
tion in the computer network. The paper considers the suggested approach to 
proactive monitoring of security policy performance and security mechanisms 
functioning. This approach is based on the different strategies of automatic imi-
tation of possible users’ actions in the computer network, including exhaustive 
search, express-analysis and generating the optimized test sequences. It is ap-
plicable to different security policies (authentication, authorization, filtering, 
communication channel protection, etc.). The paper describes stages, general-
ized algorithms and main peculiarities of the suggested approach and formal 
methods used to fulfill the test sequence optimization. We consider the general-
ized architecture of the proactive monitoring system “Proactive security scan-
ner” (PSC) developed, its implementation and an example of policy testing.  

Keywords: Security policy, monitoring, test sequence optimization.  

1   Introduction

On the computer network exploitation stage the security administrators need to check 
the correspondence of the security policy formulated on the design stage to its imple-
mentation in the computer network. This task is equivalent to the monitoring of cor-
rect performance of security tools and services deployed.  

To monitor the functioning of security tools and services on the exploitation stage 
a passive approach is being used as a rule. According to this approach the current 
system configuration is being periodically compared with the configuration that was 
installed (by analyzing the settings of operating systems and applications). The differ-
ences found say that security policy does not hold true. However such approach can 
not guarantee correct security policy fulfillment. The complex distributed network 
system requires a huge quantity of such settings. Not all of them can be under control. 
The malefactors can bypass given settings or change them dynamically by injecting 
and using particular applications. As a result the settings of software and hardware 
may differ from the security policy accepted.  

The paper proposes a common approach to the proactive monitoring of security 
mechanisms. The approach suggested consists in modeling and imitating user actions 
in the network and evaluating the results of these actions. When using this approach 
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the administrator acts mainly as observer: he takes a part in the system administration 
only when the serious violation of the security policy is revealed or its participation is 
needed to make an important decision. The suggested approach to proactive monitor-
ing is similar to active vulnerability analysis or penetration testing. Their difference is 
that during proactive monitoring we do not apply exploits in the tested network. All 
user actions are usual actions and their fulfillment is controlled by the security policy.  

The paper is structured as follows. Section 2 analyzes relevant works and describes 
the essence of the suggested approach. The common monitoring technique and algo-
rithms applied for different security policies are represented in section 3. Section 4
considers the approach features and restrictions as well as formal methods used for 
test sequence optimization. Section 5 describes the architecture and implementation of 
the proactive monitoring system developed, as well as an example of policy testing. 
Conclusion looks round the paper results and further research directions.  

2   Related Work and the Approach Suggested

Existing works on security policy, in particular on security policy monitoring, form 
the necessary basis for the paper. Russel and Gangemi [21] affirm that one of the nec-
essary conditions of system security is users’ actions monitoring and checking the 
correspondence of actions to the security policy. Marriot and Sloman [17] consider 
the issues of monitoring the network events and creating the policies to react on 
events. In [3, 6, 15, 20, 22, 25] the necessity of security policy monitoring is also 
noted. Carney and Loe [7] suggest using monitoring to select a stronger policy when 
the current is violated. Chosh et al. [12] consider active tries to violate security policy 
as possibility to form a security policy for vulnerable application. Gama and Ferreira 
[11] suggest the methods of policy detailed elaboration to monitor events in informa-
tion systems. Beigi et al. [4] use network configuration checking to confirm a policy 
correspondence. Agrawal et al. [2] consider a security policy monitoring system that 
checks the correctness of configuration changes. Strembeck [24] describes connection 
between policy rules, user behavior scenarios and user aims.  

The proactive monitoring works of Sailer et al. [23], El-Atawy et al. [9] and 
Wheeler [26] are the closest to our paper.  

Sailer et al. [16] use the proactive monitoring approach for testing the IPSec proto-
col. Authors consider a simple IPSec based VPN realization and all its possible viola-
tions. To check that network hosts are configured properly the authors suggest to 
place on the one host of VPN-connection a network packet generator and on the sec-
ond - the tool to capture and check the incoming packets. The generator forms ICMP 
packets and sends them to the host on the opposite connection point. The packet cap-
turing and checking tool captures the packets before they are processed by the net-
work protocol stack and checks if the packets were formed (secured) correctly. Such 
scheme allows to quickly reveal the incorrect IPSec configurations.  

El-Atawy et al. [9] analyze two methods of the proactive firewall testing. The naive 
approach to testing is based on sending the random packets to the firewall. The sec-
ond approach is more effective from the point of view of network resource usage. The 
specification of each rule contains the description of packets sets that this rule affects. 
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One can determine all possible intersections of such sets. It is suggested to analyze the 
result of sending one packet for each such intersection.  

Wheeler [26] describes a distributed proactive system for firewall testing. He sug-
gests a formal language for specifying the filtering rules and the architecture of the 
testing system. This system contains three types of modules (Prober, Manager and 
Wizard) that are connected in a tree-like structure. Probers are tree leafs, Wizard is the 
tree root and managers are between the root and leafs. Tester is the simplest module. 
It listens to some network port or sends packets to another tester. Manager controls 
testers and managers in its sub tree. It sends commands to subordinate modules and 
transmits answers upward on the tree-like structure. Wizard interprets the policy de-
scription, creates a testing plan, sends commands to subordinate managers, receives 
and analyses testing results and provides the user interface. Two testers are used to 
test one connection; they try to create connections using TCP or UDP protocols. 

A lot of different commercial systems are being used to manage security policies 
nowadays. Although all these tools include the components of audit and monitoring of 
security mechanisms, they mainly targeted on the integration and correlation of secu-
rity events and an integrated reporting about defended system state.  

The approach to security policy monitoring suggested in the paper is based on ac-
tive imitation of users' actions (as permitted as well as prohibited by the security pol-
icy) and on determining the differences between actual system reactions and reactions 
that are corresponds to the security policy. In existent works this approach was not re-
searched enough. In difference from most relevant papers [9, 23, 26], where monitor-
ing is used to check IPSec and filtration rules, in this paper we suggest the common 
approach to proactive monitoring of security policy which can be used for different 
policies (authentication, authorization, filtering, channel protection, etc.). According 
to the approach suggested the tested system behavior that is initiated by the generated 
actions is being compared with the behavior of standard system [5]. As a standard a 
formal model of the security policy is used. This model is built on basis of the secu-
rity policy rules and network configuration described on special specification lan-
guages.  

3   Main Stages and Techniques  

To test the security policy of the computer network completely one need to model and 
plan all possible sequences of users’ actions, perform these actions and compare net-
work responses with expected results. Such testing can not be performed manually; 
furthermore it may take too much time. To make this task be performable in practice 
it is needed to systematize the testing procedure, introduce some restrictions for the 
monitoring process and suggest mechanisms that can make checking more effective. 

The suggested approach is based on the independent checking of different rule 
categories. The every category (or policy) - authentication, authorization, filtering, 
channel protection, etc. - is implemented using different security facilities. Filtering 
policy is implemented in the network using firewalls, but authentication, authorization 
and channel protection policies - as network services.  

We suppose that all these facilities do not change their state after they perform a 
user’s action, i.e. the sequence of actions does not affect their results. In this  
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condition, it is sufficient to check only results of performing each action separately. 
Such task statement reduces the task complexity and testing time.  

To form a list of all possible actions for each policy category, the proactive moni-
toring system needs information about the policy and the network configuration. This 
information is input for monitoring. After receiving this information the monitoring 
system builds the models of the security policy and the network — this is the first 
stage of the system operation. On the second stage the system generates the sequence 
of test impacts. This sequence can be formed by various ways for different policy 
categories. The third stage is optimizing the sequence of test impacts. The fourth 
stage consists in performing the test impacts in the network and receiving the results 
of impacts. The fifth (the last) stage is generalizing the monitoring results and forming 
the report. The results of each action should be analyzed taking into account the pol-
icy category of the action. 

To check the security policy rules completely, it is needed to check success (or 
failure) for all user operations on all assets with all user system accounts. Such ap-
proach (based on exhaustive search) is a very labor-consuming, and does not always 
allow check up the policy for an adjusted time. There are other approaches that have 
no lacks of exhaustive search. They can approve with a certain probability that policy 
holds true. For example, the “express-analysis) approach checks only for one random 
object from the class. Such approach implies essential decrease of checked operations. 
When the rule uses an object of some class, we check up rule only for one random ob-
ject from this class. In this case we can have a high false negative rate of deviations. 
The other approach verifies only several objects of the class. The quantity of such 
representatives depends on quantity of objects in the given class. Thus, exhaustive 
search is the most laborious. The next is the choice of several random representatives. 
And the least laborious approach is the choice of one random representative.  

The generalized algorithm of authorization policy checking has the following op-
erations: (1) Look through all users; (2) Look through all privileges; (3) Look through 
all scanners; (4) Check up the presence of the given privilege for the given user from 
the given scanner. There are four possible check outcomes: (1) If there is an operation 
permissive rule and the operation was executed successfully then the policy is not 
broken; (2) If there is an operation permissive rule and the operation was executed 
with failure then the policy is broken; (3) If there is no operation permissive rule and 
the operation was executed with failure then the policy is not broken; (4) If there is no 
operation permissive rule and the operation was executed successfully then the policy 
is broken. The fourth violation is the most serious violation. In this case the user can 
execute operation which is actually forbidden by the policy. Another type of violation 
is the second violation (user can not execute operation permitted by the policy).  

The generalized algorithm of authentication policy checking includes the following 
operations: (1) Look up through all users; (2) Look up through all credentials; (3) 
Look up through all services; (4) Look up through all operations; (5) Check up the 
success of the given operation by the given user on the given server without authenti-
cation; (6) Check up the success of the given operation by the given user on the given 
server with the given authentication method.  

The generalized algorithm of filtering policy checking contains the following op-
erations: (1) The checked connections set is empty; (2) Look up through all firewall 
rules; (3) Assign connections set from current rule to the connection set for checking; 
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(4) Subtract checked connections set from the connections set for checking; (5) Get 
the random connection from the set of the connections for checking; (6) Look up for 
the scanner to send packets through firewall; (7) Look up for the scanner or service to 
receive packets beyond firewall; (8) Check up the possibility of connection establish-
ing between sending scanner and receiving scanner or service; (9) Add connections 
for checking set to the checked connections set. 

The generalized algorithm of channel protection checking has the following opera-
tions: (1) Look up through all servers and ports; (2) Look up through all channel pro-
tection techniques; (3) Check up the possibility of the connection to the given host 
without channel protection; (4) To check up the possibility of the connection to the 
given port of the given host using the given channel protection technique. Note that if 
a channel protection policy rule uses transport level channel protection protocols 
(such as IPSec), an application can not choose whether it uses channel protection or 
not, because the channel protection using depends on the system configuration. To 
check the protection of transmitted data on the transport level we need to use the fol-
lowing algorithm: (1) Look up through all servers; (2) Look up through all target 
hosts and ports; (3) Look up through all channel protection techniques; (4) Check up 
the possibility of connection to the given server on the given port; (5) Check up if the 
channel protection on transport level was used.  

4   Restrictions and Optimization Approaches  

There are several important aspects of the security policy monitoring. Let us consider 
three such aspects:  

(1) performing the “dangerous operations”,  
(2) possibility of conflicts with working users,  
(3) the necessity to use an authentication database.  

The dangerous operations are operations that can lead to information integrity vio-
lations. For example, for file system such operations are removing or changing a file. 
To prevent integrity violations as a result of such operations one need take care about 
the backing up the information before performing the changes. The other way to by-
pass the dangerous operations is introducing several modes of system operation. One 
of the modes allows complete testing with dangerous operations included. The other 
mode allows all operation testing except dangerous. Dangerous operations are most 
laborious because they require performing the additional actions.  

The second important aspect of the proactive monitoring is a possibility of conflicts 
with other information processing operations and users. Such conflicts may arise as a 
result of almost any operation both dangerous and safe from the integrity point of 
view. For instance, reading access to a file can be denied because this file is locked 
for editing by other user. A possible solution of this problem is introducing a special 
time to check the network when users do not work or work rarely. The disadvantage 
of this solution is impossibility to check the rules that have time restrictions. The 
other solution is to try to determine the conflict reason and use it during checking.  

The third important aspect is a need to have a database of authentication data for 
all users. This aspect is stipulated by the fact that before checking the user’s privileges 
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for an operation on an object it is necessary to be authenticated in the system. This as-
pect undoubtedly reduces the applicability of the proactive monitoring.  

The proactive monitoring is a very resource-intensive task due to both a large input 
data variety and a long time needed to receive response from the network. To de-
crease the testing time we need to optimize the test impacts.

We can optimize the test impacts by different ways: (1) remove the superfluous 
test impacts; (2) find the optimal impacts subsequence; (3) generate the impacts sub-
sequences that can be performed simultaneously. 

Due the limits of the paper, let us consider the procedure of test impacts optimiza-
tion on an example of filtering policy testing.

To describe optimization methods we need to give a formal description of filtering 
policy. The total network filtering policy is a set of policies for all firewalls in the net-
work. The methods of removing the superfluous test impacts and optimizing the test 
impacts sequence that are described below should be applied to each firewall policy.  

The filtering policy of each firewall represents a set of filtering rules. Every fire-

wall rule ,i i iR P A=< >  determines a set iP  of network packets, that rule affects, 

and an action { , }iA allow deny∈  that has to be applied to the packets from iP . Fur-

thermore it is essential to take into account the ordering of rules because the packets 

from iP  may intersect for different rules.  

Let us denote the firewall policy as an ordered set of the firewall rules by 

1{ } fN

f i iFP R == , where fN  - the quantity of rules in the policy of the firewall f .

The test impact for the filtering policy represents sending the network packet over 
the firewall.  

To test the filtering policy completely we need to send all possible packets over the 
firewall and compare that they were passed in compliance with the policy. Such test-
ing will take a long time. We can send one packet for every rule, but this is not a good 

decision because the packets iP  of the rules may intersect. In such case several rules 

affect the results of packet passing.  
To remove superfluous impacts it is possible to use the approach suggested El-

Atawy et al. [9]. The main idea of the approach named policy segmentation is to break 

the packets sets 1{ } fN

i iP =  for all rules on their disjunctive subsets 1{ }M
j jS S ==  of so-

called segments. The segment is such subset of the packets sets from one or several 
rules that all packets from the subset are related to the same rules set. Authors show 
that it is enough to send over firewall one packet from each segment to test all possi-
ble combinations of rules.  

The sending of only one packet from each segment reduces the number of test im-
pacts. But there is a possibility of additional optimization by selecting the optimal se-
quence of test impacts.

Let we have two rules 1R  and 2R  such that 12 1 2P P P= ∩ ≠ ∅  and 

1 2,A allow A deny= = . We sent packet 12 12p P∈  first and revealed that it does not 

arrive at destination point. Consequently the rule 1R  does not hold and it is not 



Policy-Based Proactive Monitoring of Security Policy Performance 203 

needed to send the packet 1 1 2\p P P∈ . In other side, if we send the packet 1p  first 

we will need to send packet 12p  in any case to verify the rule 2R .

The goal of the impacts sequence optimization is to create such packets sequence 
that will reveal all deviations from security policy by a minimal number of steps. 

Let us use binary test questionnaire optimization theory described in [1] and define 

the set of events as a set of binary vectors 1{{ } }fN

i iE e == .

Let 1ie =  if a firewall rule works good and 0ie =  if the rule does not work. The 

test impact jt  is one packet sending from a segment jS S∈ . Each test impact may 

be fulfilled successfully (the packet was received at the destination point) or unsuc-
cessfully (the packet was filtered by the firewall).  

Depending on the result, the test impact divides the set E  of events on two 

classes: 
jtE  - the events corresponding to the successful test impact jt  and 

jtE  - the 

events corresponding to the unsuccessful test impact jt .

To identify events from the set E  we can use different binary test questionnaires. 
The questionnaire is a set T  of questions and the sequence of their asking. The bi-

nary questionnaire can be represented as a binary tree, where the nodes of the tree are 

the subsets of the set E and every node X E⊂  has sons tX  and tX . The leafs of 

the tree are nodes X E⊂ , for which tX  or tX  is empty set.  

Performing the test actions and moving at the tree we will come into list that con-
tains the set of the events that take a place at the tested system. When we find optimal 
test questionnaire for the given set of the events and test actions, we find optimal se-
quence of the actions performing.  

It is necessary to define the optimality criteria of the test questionnaire. Let us de-
fine such criteria as minimum of the average count of the test actions need to be per-
formed to identify the event from the E  unambiguously:  

1

( ) ( )
fN

i i
i

C p y C y
=

= ,

where iy E∈  - an event, corresponding to the firewall state, ( )ip y  - the probability 

of the event iy , ( )iC y  - the cost of the iy  identification.  

The cost of event identification is defined as follows: 

( )

( ) ( )
k i

i k
t y

C y c t
µ∈

= ,

where ( )iyµ  - a path from the root of the questionnaire to the event iy , i.e. a set that 

contains test actions that need to be performed to identify the event iy ; ( )kc t  - the 

cost of the question kt .
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Let the costs of every question is 1, then ( )iC y  will be as follows: 

( ) | ( ) |i iC y yµ= .

Let also all events have equal probability then the average cost of the questionnaire 
will have the following form: 

1

1
| ( ) |

fN

i
if

C y
N

µ
=

= .

So we can obtain binary test questionnaire where test impacts correspond to ques-
tions. If we optimize this questionnaire we will obtain optimal test impacts sequence. 

Let us use dynamic programming method for the optimization of binary test ques-
tionnaires with the incomplete set of questions.

To describe this method we need to define the concept of situation. Let for the set 

E  of events the set T  of questions is defined. Then TE  is a set of subsets Lα  on 

which the sequences of questions from T  divide E . For each TL Eα ⊂  there are a 

subset of questions Tα  that have a sense relative to Lα , i.e. these questions divide 

Lα  on two nonempty subsets. The pair ( , )L Tα α  is named as a situation, | |m Lα α=
is a situation degree.

Let for each possible situation with degree mα  the corresponding optimal sub 

questionnaire has been built. Then, using these sub questionnaires, we can build an 

optimal sub questionnaire for the situation ( , )L Tβ β  with the degree m mβ α> .

The Bellman’s optimality equation for this case is as follows:  

2

1

'

( , ) min ( ) ( , )

( ) ( ')

n n

n

opt n opt
t T

n

n
y L y L

C L T c t p C L T

p p y p y

∈ =

∈ ∈

= +

=

β

β β

β β β β
,

where ( )c t  is the cost of the question t , ( )p y  is the probability of the event y ,

np  is the conditional probability, 
n

Lβ  are the subsets on which question t  divides 

the set Lβ  ( 1, 2n = ). Since the costs of questions are equal, we can set them as 1. We 

will also consider that the probabilities of all events are equal, then the equation will 
be as follows:  

2

1

( , ) min 1 ( , ) .n

n nopt opt
t T

n

L
C L T C L T

Lβ

β
β β β β

β
∈ =

= +

This equation is the base of the dynamic programming algorithm [1]. 
The dynamic programming algorithm for the test impacts optimization is as fol-

lows:  
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1. Set 1mβ = .

2. For each possible situation ( , )L Tβ β  with degree mβ  build optimal sub que-

stionnaire according to Bellman’s equation using sub questionnaires built on 

the previous steps for situations with degree m mβ< .

3. If fm Nβ ≤  then increase mβ  on 1 and return to step 2, in other case the op-

timal questionnaire has been built.  
The dynamic programming method allows finding the optimal test packet subse-

quence for firewall testing. The disadvantage of the dynamic programming method is 
exponential complexity of the algorithm.  

Thus we defined test impacts optimization ways to test filtering policy of the single 
firewall. To optimize complete network filtering policy we need to find parallel test 
impacts sequences. Obviously each firewall can be tested independently and different 
firewalls testing results do not affect each other [26].  

To illustrate the presented method let us consider a simple network with a bound-
ary host (see figure 1).  

Fig. 1. The test network with a boundary host 

Let us consider the filtering policy of the firewall that consists of three rules: (1) al-
low TCP connections with the host 193.202.13.3 at the port 80; (2) allow TCP con-
nections with the host 193.202.13.3 at the port 110; (3) deny all other connections.  

Every rule allows the particular type of packets, and the last rule denies all packets 
that were not referred. This rules creation method is typical for the firewall policies.  

Let us consider how the test actions optimization algorithm works on the given ex-
ample. We will note every state of the tested firewall by three letters, for example 
AbC. The capital letter means that rule works correctly in this state and small letter 
means that rule does not work. For example, at the state AbC the A and C rules work 
and B rule does not work.  

The set E of the all possible states looks as follows: E = { ABC, ABc, AbC, Abc, 
aBC, aBc, abC, abc }. The set T of the possible test actions contains three elements: T
= { Pa, Pb, Pc }, where Px corresponds to connection establishing that is processed by 
the rule X. For instance Pa is the establishing of TCP connection with the host 
193.202.13.3 at the port 80 and Pc is the establishing of TCP connection with the host 
193.202.13.3 at the port different from 80 and 110.  

The set of the subsets that are results of partitioning the E by the questions from T
looks as follows: ET = { E, { ABC, ABc, AbC, Abc, aBc, abc }, { ABC, ABc, Abc, 
aBC, aBc, abc }, { ABC, ABc, Abc, aBc, abc }, { ABc, Abc, aBc, abc }, { ABC, 
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AbC, aBC, abC }, { aBC, abC }, { ABC, abC }, { ABC, AbC }, { ABC, aBC }, { abC },  
{ AbC }, {aBC }, { ABC } }. The test actions divide the set E into the situations of differ-
ent degrees.  

Let us consider all situations from the first degree situation up to the eight degree 
situation and create optimal test plan. First degree situations: ( { abC } , { } ), ( { 
AbC } , { } ), ( { aBC } , { } ), ({ ABC } , { } ). Because the test actions for all these 
situations are empty then Copt for each first degree situation is equal to 0.  Second de-
gree situations: ( { aBC, abC }, { Pb } ), ( { ABC, abC }, { Pa } ), ( { ABC, AbC }, 
{ Pb } ), ( { ABC, aBC }, { Pa } ). For every situation there is only one test action so 
for all situations Copt = c(t) =1. Fourth degree situations: ( { ABc, Abc, aBc, abc }, 
{ } )  ( { ABC, AbC, aBC, abC }, { Pa, Pb } ). For the first situation the test actions 
set is empty, consequently Copt = 0. Second situation allows two test actions, conse-
quently Copt = min ( 1 + 2/4 + 2/4, 1 + 2/4 + 2/4 ) = 2. The optimal test action is any 
from two. Let us assign Pa as optimal test action.  Fifth degree situations: ({ ABC, 
ABc, Abc, aBc, abc }, { Pc } ). Copt = 1 + 1/5 * 0 + 4/5 * 0 = 1.  There are two sixth 
degree situations and each allows two test actions: ( { ABC, ABc, AbC, Abc, aBc, 
abc }, { Pb, Pc } ) and ({ ABC, ABc, Abc, aBC, aBc, abc }, { Pa, Pc } ). Let us con-
sider Copt for the first situation. Copt = min ( 1 + 1/6 * 0 + 5/6 * 1, 1 + 2/6 * 1 + 4/6 * 
0 ) = 1,33 and optimal test action is Pc. Similarly for the second situation Copt = 1,33 
and optimal test action — Pc. Let us assign the first situation as optimal and the opti-
mal test action - as Pc.  There is only one eighth degree situation: ( E, { Pa, Pb, Pc } ). 
Copt = min ( 1 + 6/8 * 8/6 + 2/8 * 1, 1 + 6/8 * 8/6 + 2/8 * 1, 1 + 4/8 * 0 + 4/8 * 2) = 
min (2 1/4, 2 1/4, 2) = 2. The optimal test action is Pc. The optimal test tree that was 
created in accordance with the given approach is shown in figure 2.  

Fig. 2. Optimal test tree 

The average cost of the questionnaire that corresponds to the tree is C = 1/8 * (1 * 
4 + 3 * 4) = 2. Let us try to calculate the difference between optimal and non-optimal 
average number of test operations. Our policy will be typical, i.e. will contain 

1fN −  permissive rules and one prohibitive rule like in the example above. Then the 

average cost of the optimal tree can be calculated as follows:  

1 11
( 2 2 )

2
f f

f

N N

opt fN
C N − −= +
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and the average cost of the non-optimal tree will be: 

1 11
( (2 1) ( 1)(2 1))

2
f f

f

N N

nopt f fNC N N− −= + + − − .

Then the difference between optimal and non-optimal average costs will be: 

1 21 1
(( 2)2 1)

22 2
f

f f

N f
nopt opt fN N

N
C C N

− −
− = − + = + .

When 22fN =  the difference will be 
22

20 1
10

2 2nopt optC C− = + ≈  operations. 

5   System Architecture, Implementation and Experiments  

The generalized architecture of “Proactive security scanner” system (PSC) that im-
plements the suggested approach is depicted in figure 3. PSC consists of configurator, 
scanners, correlator and management console.  

Fig. 3. Generalized architecture of PSC 

The PSC input is the tested system specification, the tested security policy specifi-
cation and testing parameters (to manage the process of testing). The PSC output is 
the report about revealed deviations from the specified security policy in the tested 
system and their estimation (to answer to the question how critical or crucial these 
deviations are). The PSC should satisfy the following main requirements: tested sys-
tem and security policy coverage (completeness), deviations estimation fidelity (ade-
quacy), and productivity.  

PSC allows revealing the following security policy violations: Authorization policy 
- the impossibility of authorized operation, the possibility of forbidden operation;  
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Authentication policy - the possibility of operation performing by unauthenticated 
user, the impossibility of operation performing by authenticated user; Filtering policy 
- permitted connection blocking, forbidden connection possibility; Channel protection 
policy - unprotected channel possibility, the lack of channel protection.  

Configurator (PSC Config) plans the test impacts sequence to monitor the security 
policy performance by forming the tasks for scanners (see figure 4). Its input consists 
of the specifications of the checked security policy in System Description Language 
(SDL) and the tested network in Security Policy Language (SPL) as well as the values 
of testing parameters. The testing parameters can be a subset of security rules to 
check, a part of the network to test, subjects and objects to test, information about 
scanners locations in the system, internal information for scanner task generation, etc.  

Fig. 4. Generalized architecture of configurator  

Security policy description language (SPL) [19] is based on the CIM standard [8] 
and XML technologies. SPL allows setting the grouping, priority and classification of 
the policy rules and categories. It contains five rules categories: authentication, au-
thorization (access control), filtering, channel protection (IPSec, SSL/TLS) and opera-
tional. Syntax of each rule category is determined by a particular scheme that is based 
on the XML-scheme. SPL schemes were derived from xCIM-schemes that are the 
representations of CIM using XML-scheme technology.  

The system description language (SDL) [19] is applied to describe the network 
configuration and its functionality. Policy rules must use only such devices, services 
and functions that are contained in the SDL network description. SDL is based on 
XML scheme and contains the following main parts: network topology description, 
i.e. how network nodes are connected, connection type (wired, wireless), cable type, 
etc; network services description, that are available on corresponding servers and also 
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operating systems installed; devices and interfaces description, i.e. names, addresses, 
ports, common purpose description, vendor, etc.  

Configurator creates the tasks for scanners by processing input data. For example 
to check the firewall, configurator forms two tasks: (1) to send a packet from IP ad-
dress before firewall and (2) to receive the packet at IP beyond firewall.  

The generalized algorithm of configurator includes the following steps: (1) Re-
ceive the input data; (2) Receive information about scanners locations; (3) Construct 
the tested system model according to the system specification; (4) Designate scanners 
locations in the model of the tested system; (5) Construct the tested policy model ac-
cording to the policy specification; (6) Look through all security policy rules; (7) Se-
lect appropriate rule checking method according to kind of the rule and testing pa-
rameters; (8) Generate the tasks for the given scanners; (9) Transfer generated tasks to 
scanners for processing. The details of the algorithm realization differ for each policy 
class check.  

Scanners (PSCs) are components which check a part of the security policy in the 
tested sub-network. The policy part and system fragment are set by configurator. A 
scanner task is transferred from configurator to scanner and contains test impact in-
stance. Scanner checks the policy by performing impact and sends check results to 
correlator.  

The generalized algorithm of scanner: (1) Execute impact instance run method; (2) 
If there are deviations from the rule, add check results and deviations conditions at the 
scanner report; (3) Transfer check results to correlator.  

Correlator (PSC Correlation) receives the check results, analyses them and forms 
summary reports about the security policy violations revealed in the network.  

The generalized algorithm of correlator: (1) Receive check results from scanners; 
(2) Process and generalize check results to form reports about revealed deviations; (3) 
Generate and send reports to major system.  

Management console allows the security administrator to manage all system com-
ponents, set input data to configurator and look through the reports of correlator.  

To simplify configuring and information transferring, configurator, correlator and 
management console can be incorporated in one module. To effectively monitor the 
network at least one scanner should be located at each network segment. In addition, 
for example, there should be a scanner on a workstation outside the network and a 
scanner on a workstation which is connected to the analyzed network over modem. If 
the wireless network is used we need a scanner on the wireless network host.  

The main screen of the PSC management console (PSC window) is shown in  
figure 5. Tabs panel on the main user interface screen allows examining the informa-
tion that is concerned with current network configuration (Network tab), security pol-
icy (Policy tab), scanners’ states (Scanners tab), revealed deviations from the security 
policy (Report tab) and also system working log (Log tab).  

In figure 5 (at right-bottom corner) the checking parameters window (PSC Settings 
window) is showed. Using these parameters one can determine the dangerous opera-
tions performed (Actions field), what policy categories will be tested (Policy field), 
what will be testing accuracy (Accuracy field) and locations of the scanners (Check 
from field). 
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Fig. 5. Test network scheme, security policy and scanners state 

During the investigation of the suggested approach the experiments for checking 
PSC functioning with different network configurations, security policies and monitor-
ing methods were performed.  

Let us consider only an example of filtering policy testing in the test network.  
During checking, planner looks through all filtering policies (each policy contains 

all rules for particular firewall) and passes each policy to the scanner task generator. 
Planner uses appropriate method to check filtering policy completely. Scanner task 
generator forms the set of the checked connections. Generator looks through all filter-
ing rules from the policy. It calculates set of the connections to test by subtracting 
from the set of the connections the set of the already checked connections. Then gen-
erator gets a connection from the set for checking and searches scanners to test the 
connection. One scanner is needed to send the packets through firewall and other to 
receive the packets beyond firewall. If there is no receiving scanner then generator 
can use existing service to check connection possibility. After checking, the report tab 
will be generated. Log tab will contain the scanner actions log for the testing period. 
Performed impact steps can be seen. Scanners tab will show the scanners state chang-
ing during testing.  

6   Conclusion

The paper considered the suggested approach to the proactive monitoring of the net-
work security policy. The suggested approach is based on the imitation of different 
users’ actions in the investigated network which can disapprove or approve the fact 
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that security policy holds true. The particularities, advantages and disadvantages of 
the suggested approach are determined. The advantage of the proactive monitoring 
approach suggested is that the action results are similar to the results of actions per-
formed by users. It enables to get the representation on actual system behavior. The 
system configuration analysis does not give such representation because malefactor 
that controls the system can violate security mechanisms and (or) replace the analysis 
results [10, 13]. The disadvantages of the approach suggested are high complexity 
and low speed of checking in most cases, the restrictions due performing the poten-
tially dangerous actions and the possibility of conflicts with users. Furthermore the 
proactive monitoring approach will not give results if information about violation is 
not contained in the policy, for example, if a malefactor leaved in the system a back 
door which can not be revealed by imitating the regular users’ actions. Nevertheless 
the approach suggested allows confirming that system users have the privileges that 
were contained in the policy specification.  

The approach is implemented in the proactive monitoring system “Proactive secu-
rity scanner” (PSC). The main features of implementation are as follows: distributed 
architecture including multitude of scanners, available in different places of the net-
work; maintaining a centralized automatic configuration of different scanners; gather-
ing data from different scanners located in different places and centralized analyzing 
the scanning results; mechanism of interpreting and transforming system and policy 
specifications to the scripts of user actions on evaluating conformity of the current 
policy and system configuration to the specified security policy and system configura-
tion; mechanism of automatic construction and replaying scripts of user actions taking 
into account various intentions of users and (or) malefactors.  

PSC can work in several modes which are differentiated by the accuracy and 
checking speed: high accuracy checking (exhaustive search), medium and low accu-
racy checking, as well as optimized test sequences mode. PSC allows demonstrating 
the approach efficiently on the examples of filtering, channel protection, authorization 
and authentication policies. The developed optimization methods allow speeding up 
of the monitoring process greatly. The suggested approach to the monitoring may be 
used to fulfill the set of additional testing tasks. For instance it can be applied to imi-
tation of DDoS attacks on the network resources. Such situation imitation can be per-
formed for the server testing purpose. The future research directions are improving 
the suggested solutions and comprehensive theoretical and experimental evaluation.  
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Abstract. The ability to efficiently compare differing security solutions for 
effectiveness is often considered lacking from a management perspective. To 
address this we propose a methodology for estimating the mean time-to-
compromise (MTTC) of a target device or network as a comparative metric. A 
topological map of the target system is divided into attack zones, allowing each 
zone to be described with its own state-space model (SSM). We then employ a 
SSM based on models used in the biological sciences to predict animal behavior 
in the context of predator prey relationships. Markov chains identify 
predominant attacker strategies which are used to build the MTTC intervals 
which can be compared for a broad range of mitigating actions. This allows 
security architects and managers to intelligently select the most effective 
solution, based on the lowest cost/MTTC ratio that still exceeds a benchmark 
level. 

Keywords: Network Security, SCADA Security, Time-to-Compromise, 
Markov Chains, Predator Model, Attack Paths, Attack Zones, Attack Trees. 

1   Introduction 

One of the challenges faced by any network security professional is providing a 
simple yet meaningful estimate of a system or network’s security preparedness to 
management who are not security professionals. While it can be relatively easy to 
enumerate specific flaws in a system, seemingly simple questions like “How much 
more secure will our system be if we invest in this technology?” or “How does our 
security preparedness compare to other companies in our sector?” can prove to be a 
serious stumbling block to moving a security project forward. 

This has been particularly true for our particular area of research, namely the 
security of Supervisory Control and Data Acquisition (SCADA) and Industrial 
Automation and Control Systems (IACS) used in critical infrastructures such as 
electricity generation/distribution, petroleum production/refining and water 
management. Companies operating these systems are being asked to invest significant 
resources towards improving the security of their systems, but management’s 
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understanding of the risks and benefits is often vague. Furthermore, competing 
interests for the limited security dollars have often left many companies making 
decisions based on the best sales pitch rather than a well-reasoned security program.  

The companies operating in these sectors are not unsophisticated – most have had 
many years of experience making intelligent business decisions on a daily basis on a 
large variety of multifaceted issues. For example, the optimization of hundreds (or 
thousands) of process feedback loops in the refining and chemicals industries 
(typically called control loops) is both extremely complex and critical to profitable 
operations. Yet, models based on the concept of Key Performance Indicators (KPI) 
have proven to be successful in simplifying the problem to the point where upper 
management can make well reasoned decisions on global operations without getting 
mired in the details. [1] 

In our discussions with these companies, it was repeatedly pointed out that similar 
types of performance indicators could be very useful for making corporate security 
decisions. What was wanted was not a proof of absolute security, but rather a measure 
of relative security.  

To address this need, we propose the concept of a mean time-to-compromise 
(MTTC) interval as an estimate of the time it will take for an attacker within a 
specific skills level to successfully impact the target system. 

Fig. 1. Example of estimated MTTC intervals (in days) for the network shown in Fig. 2. MTTC 
intervals are grouped into threes for each attacker skill level and are for the case study given 
near the end of this paper. The top interval from each group (B) represents the baseline system, 
the middle interval (P1) represents more frequent patching of nodes on the primary enterprise 
network, and the bottom interval (P2) represents more frequent firewall rule reviews of the 
Internet facing firewall. 

The concept of MTTC is not new – for example, Jonsson uses mean-time-to-
breach to analyze attacker behaviors [2] and the Honeynet community uses MTTC as 
a measure of a system’s ability to survive exposure to the Internet [3]. The key point 
with these works is that MTTC was seen as an observable variable rather than 
calculated indicator of relative security. McQueen et al [4] [5] moved toward the 
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latter concept with a methodology that employed directed graphs to calculate an 
expected time-to-compromise for differing attacker skill levels (The second paper 
also offers an excellent history of related work). Other works look at probabilistic 
models to estimate security. However, as McQueen et al points out, many of the 
techniques proposed for estimating cyber security tend to require significant detail 
about the target system, making them unmanageable as a comparative tool for 
multiple systems.  

To address this, our model focuses on being a comparative tool and proposes a 
number of averaging techniques to allow it to become a more generally applicable 
methodology while still allowing meaningful comparisons. We also developed our 
model, along with its supporting methodology, with emerging industrial security 
standards in mind – specifically those being developed by the International 
Electrotechnical Commission (IEC) [6] and by the International Society for 
Measurement and Control (ISA) [7] [8]. 

2   Lessons Learnt from Physical Security 

Determining the burglary rating of a safe is a similar problem to determining the 
security rating of a network. Both involve a malicious threat agent attempting to 
compromise the system and take action resulting in loss. Safes in the United States are 
assigned a burglary and fire rating based on well defined Underwriters Laboratory 
(UL) testing methodologies such as UL Standard 687 [9]. A few selected UL safe 
burglary ratings are given in Table 1. 

Table 1. Selected UL Safe Burglary Ratings 

UL Rating 
NWT 
(Min.) 

Testing Interpretation 

TL-15 15 Tool-Resistant  (face only) 

TL-30 30 Tool-Resistant (face only) 

TRTL-15X6 15 Torch & Tool-Resistant (6 Sides) 

TRTL-30X6 30 Torch & Tool-Resistant (6 Sides) 

TXTL-60 60 Torch & Tool-Resistant 

This rating system is based around the concept of “Net working time” (NWT), the 
UL expression for the time that is spent attempting to break into the safe by testers 
using specified sets of tools such as diamond grinding tools and high-speed carbide-tip 
drills. Thus TL-15 means that the safe has been tested for a NWT of 15 minutes using 
high speed drills, saws and other sophisticated penetrating equipment. The sets of tools 
allowed are also categorized into levels - TRTL-30 indicates that the safe has been 
tested for a NWT of 30 minutes, but with an extended range of tools such as torches. 

Our discussions with UL testing engineers confirmed that design level knowledge 
about the safe is used in planning and executing the attacks. They also confirmed that 
although there are maybe dozens of strategies (classified as attack types) that can be 
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used to gain access to the safe, only a few are actually tried. Finally, each surface of 
the safe represents an attack zone which may alter the strategies used by the attacker.  

There are a few observations about this process that merit mention: 

1. There is an implication that given the proper resources and enough time, any safe 
can eventually be broken into. 

2. A safe is given a burglary rating based on its ability to withstand a focused attack 
by a team of knowledgeable safe crackers following a well defined set of rules and 
procedures for testing.  

3. The rules include using well-defined sets of common resources for safe cracking.  
4. The resources available to the testers are organized into well-defined levels that 

represent increasing cost and complexity and decreasing availably to the average 
attacker. 

5. Even though there might be other possibilities for attack, only a limited set of 
strategies will be used, based on the tester’s detailed knowledge of the safe. 

Most important, the UL rating does not attempt to promise that the safe is secure 
from all possible attacks strategies – it is entirely possible that a design flaw might be 
uncovered that would allow an attacker to break into a given safe in seconds. 
However, from a statistical point of view, it is reasonable to assume that as a group, 
TL-30 safes are more secure than TL-15 safes. This ability to efficiently estimate a 
comparative security level for a given system is the core objective of our proposed 
methodology. 

Learning from the philosophy of rating safes, our methodology for rating a target 
network makes the following assumptions: 
1. Given the proper resources and enough time, any network can be successfully 

attacked by an agent skilled in the art of electronic warfare. 
2. A target network or device must be capable of surviving an attack for some 

minimally acceptable benchmark period (the MTTC). 
3. The average attacker will typically use a limited set of strategies based on their 

expertise and their knowledge of the target. 
4. Attackers can be statistically grouped in to levels, each with a common set of 

resources such as access to popular attack tools or a level of technical knowledge 
and skill. 

3   Attack Zones 

Just like a safe has different sides that require their own attack strategies, we believe 
that networks have the same characteristic, namely that a complex network can be 
divided into zones that are generally homogeneous. Thus we begin by dividing a 
topological map of the target network into attack zones as is shown in Fig. 2. In this 
particular case, the target of interest is Zone 1, is a process control network (PCN) 
that is buried inside a corporate enterprise network (EN), which in turn is connected 
to the Internet1. Each zone represents a network or network of networks separated 

1  This is a very common architecture in SCADA systems. For example, see “NISCC Good 
Practice Guide on Firewall Deployment for SCADA and Process Control Networks”, 
http://www.cpni.gov.uk/docs/re-20050223-00157.pdf 
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from other zones by boundary devices. Within a zone it is assumed that there are 
consistent security practices in effect such as operating system deployment, patching 
practices and communications protocol usage. These practices could be good or bad 
(i.e. patching is performed randomly by users), but they are consistent within the zone. 

Fig. 2. An example illustrating attack zones and attacker movement through the zones to strike 
a target device on the target network. The dashed and dotted lines represent two different attack 
paths that are also represented by the same patterned lines on the attack path model of this 
system shown in Fig. 4. This topology is used for the case study presented near the end of this 
paper.

The concept of zones is important for two reasons. First, an attacker staging an 
attack from within the target network will likely employ a different set of strategies 
than he/she would from the Internet and dividing the topological map into zones 
allows us to represent each zone with its own SSM. Second, by assuming consistent 
application of practice within a zone, we can make important simplifications to the 
model to keep it manageable.  

4   Predator Model 

Papers by Sean Gorman [10] and Erland Jonsson [2] provided the motivation and 
insight to pursue a predator prey-based SSM. For the purposes of this paper, our 
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proposed SSM, shown in Fig. 3, is for attacks launched from the Internet. In it we 
have defined three general states: 

1. Breaching occurs when the attacker takes action to circumvent a boundary device 
to gain user or root access to a node on the other side of the boundary.  

2. Penetration is when the attacker gains user or root access to a node without 
crossing a boundary device.  

3. Striking is taking action to impact the confidentiality, integrity (take unauthorized 
control) or availability (deny authorized access) of the target system or device. 

While it is possible to hypothesize many more states (and some may prove to be 
necessary), our experimentation indicates that having more than five states adds little 
to the output of the model, yet greatly increases the complexity of the calculations. 
For example, McQueen and others suggests Reconnaissance states. However, we feel 
that this can add a significant level of complexity to the process since virtually every 
state will require some reconnaissance in order to be transited. Thus reconnaissance 
could just be considered a sub-state and included as part of a primary state’s 
calculations. 

Fig. 3. SSM of attacker movement for attacks launched from the Internet 

The attacker compromises one or more nodes as he/she moves towards the target 
network as is shown in Fig. 2. With layered network architectures, the resulting 
sequence of compromised nodes appears as movement towards the target and the 
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attacker’s strategy, called an attack path, is betrayed by the sequence of states — a 
Markov chain.  

5   Attack Path Model 

The state-space predator model is used to map out the attack path model, a SSM of all 
possible attack paths from the launch node to the target device taking network 
topology and security policies into consideration. Consider the network shown in 
Fig. 2. If we make the simplifying assumptions that: the attacker only moves forward 
towards the target, the firewalls cannot be compromised, and the target device cannot 
be compromised from a device outside of its zone, then the resulting attack path 
model is as shown in Fig. 4.  

B1 B2 P2

P1

I

A

C

Launch

(L)

Success

(S)

Zone 3 Zone 2 Zone 1

Internet Enterprise Network Target Network

Fig. 4. Attack path model for the network shown in Fig. 2 with simplifying assumptions. The 
dashed and dotted paths correspond to the same patterned attack paths as are shown in Fig. 2. 
State times are given in tables 2, 3 and 4 for the case study given near the end of this paper.

The assumption that the attacker only moves forward towards the target reflects 
our philosophy that a motivated attacker will not deliberately increase their attack 
time with unnecessary actions. The second and third assumptions may not be typical 
of most networks and could be removed. However for the purpose of this paper, they 
simplify the attack path model to clearly illustrate its salient features. 

6   Estimating State Times 

The next step is to estimate state times and there are numerous methodologies that can 
be used for this purpose. In this paper we present two; a statistical algorithm based on 
a modified version of McQueen et al’s Time to Compromise Model (TTCM) [5] and 
an attack tree-based technique. The first allows us to estimate the duration of the 
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breach and penetration states while the second is used to obtain a general and 
formalized estimate for the strike states in control systems where algorithms are not 
yet available. 

6.1   The State-Time Estimation Algorithm (STEA)2

The attacker’s actions are divided into three statistical processes: 

• Process 1 is when the attacker has identified one or more known vulnerabilities 
AND has one or more exploits on hand.  

• Process 2 is when the attacker has identified one or more known vulnerabilities; 
however, he does not have an exploit on hand.  

• The attacker is in process 3 when there are no known vulnerabilities and no known 
exploits available.  

The total time of all three processes is the estimated state time (T) as is shown  
in (1).  

)P1(ut)u1)(P1(tPtT 131211 −+−−+= (1)

Where: T = estimated state time 
 t1 = mean time that the attacker is in process 1 
 P1 = probability that the attacker is in process 1 
 t2 = mean time that the attacker is in process 2 
 u = probability that the attacker is in process 3 
 t3 = mean time that the attacker is in process 3 

Process 1 
Process 1 is hypothesized to have a mean time of 1 day as is shown in (2). We expect 
this time to change with experience and we defer to McQueen et al [4] for supporting 
arguments.  

=1t  1 day (2)

The probability that the attacker is in process 1 is shown in (3). 

K/MVe11P ×−−= (3)

Where: P1 = probability that the attacker is in process 1 
 V = average number of vulnerabilities per node within a zone 
 M = number of readily available exploits available to the attacker 
 K = total number of non-duplicate vulnerabilities 

In the absence of statistical data, we hypothesize that the distribution of attackers 
versus skills levels to be a Normal Distribution and we introduce a skills indicator 
which represents the percentile rating of the attacker and can take on any value from 0 
(absolute beginner) to 1 (highly skilled attacker). 

2  To differentiate between the original TTCM of McQueen et al and our modified version we 
call our version the State-Time Estimation Algorithm (STEA). 
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M is the product of the skills multiplier and the total number of readily available 
exploits available to all attackers (m). McQueen chose m to be 450 based on exploit 
code publicly available over the Internet through sites such as Metasploit. [11] We 
used the same value for “m” and multiplied by the skills multiplier to get “M” for 
both the breach and penetration states.  

K represents the number of non-duplicate software vulnerabilities in the ICAT 
database for both the breach and penetration states. We hypothesize that it can be 
extended represent other classes of vulnerabilities, such as the number of non-
duplicate vulnerabilities in the protocol being used to strike the target device. 

Process 2 
Process 2 is hypothesized to have a mean time of 5.8 days. Again we expect this time  
to change with experience and we defer to McQueen et al. for supporting arguments. [4] 

+−

=
∏
= +−

+−∗+∗=
1AMV
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2i 1iV

2iNM
tries1

V

AM
ET (4)

Where: ET = expected number of tries 
 V = average number of vulnerabilities per node within a zone 
 AM = average number of the vulnerabilities for which an exploit can be 

found or created by the attacker given their skill level 
 NM = number of vulnerabilities that this skill level of attacker won’t be 

able to use 

ETdays8.5t 2 ×= (5)

Where: t2 = mean time that the attacker is in process 2 
 ET = expected number of tries 

Process 3 
This process hypothesizes that the rate of new vulnerabilities or exploits becomes 
constant over time. [12] To calculate this we need a probability variable u that 
indicates that process 2 is unsuccessful.  

V s)(1u −= (6)

Where: u = probability that the attacker is in process 3 
 s = attacker skill level (0 to 1) 
 V = average number of vulnerabilities per node within a zone 

8.542.30)5.0)s/1((t 3 +×−= (7)

Where: t3 = mean time that the attacker is in process 3 
 s = attacker skill level (0 to 1) 

Equations (6) and (7) differ from the McQueen equations in that AM/V has been 
replaced with s (the skills factor).  



222 D.J. Leversage and E.J. Byres 

The strength in the STEA model is that can be modified to include other time for 
sub-states (such as reconnaissance) and can also be adapted to incorporate 
environmental variables that effect the state times (such as patching intervals). As an 
example of this flexibility, the study team decided to include a rather abstract variable 
into the calculation– the frequency of access control list rule reviews.  To do this we 
first assumed that boundary devices like routers and firewalls offer security by 
reducing the number of vulnerabilities that are visible to the attacker. In other terms, 
only a portion of the network’s attack surface is visible to the attacker. [13] We then 
assume that the effectiveness of any boundary device decays if its rule sets are not 
reviewed regularly [14]. We then incorporated this relationship to the Equations (3) 
and (6) to produce equations (8) and (9).  

M/KVe11P ××−−= (8)

( ) Vs1u ×−= (9)

Where: α = visibility (α = 1 when estimating penetration state times) 
Finally we worked with a firewall expert at the British Columbia Institute of 

Technology to come up with a possible correlation between visibility and 
update/review frequency. His estimation is: No Reviews, α = 1.00, Semi-Annual, α = 
0.30; Quarterly, α = 0.12; Monthly, α = 0.05. Further research is needed to provide 
support for these estimations, but as a proof of concept they are sufficient. 

This is one example of the opportunity to add environmental variables that may 
eventually prove to be important indicators of relative security performance. Other 
factors we have experimented with include patch intervals, operating system diversity 
and password policies. If industrial control loop optimization research is any 
indication, which indicators are truly important and how they affect the MTTC will be 
an area for considerable future research. 

6.2   Estimating Strike State Times Using Attack Trees 

In many cases analytical models are not yet available for a given state. For example, 
in the industrial controls world inherent vulnerabilities in the SCADA protocols 
themselves appear to have far more impact on the security than operating system or 
application vulnerabilities [15] and it is not clear if the STEA assumptions apply. To 
address this issue, our research activities have included exploring ways attack trees 
can be used to estimate state times.  

We developed an attack tree methodology whereby the attacker’s strategy maps to 
a forest of trees and yet remains bound by using a limited set of actions that can be 
taken at the end nodes based on Military lexicon.  

Fig. 5 illustrates a partial attack tree for breaching the EN by compromising 
Workstation #1 through software vulnerabilities. Notice that the root of the tree 
represents goal of attacker and the state. The next layer of nodes represents a physical 
device under attack. The third layer identifies the failure mechanism (the 
vulnerability) and the final layer represents the exploit capabilities of the attacker. 
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Fig. 5. A partial breach EN tree with software vulnerability exploits expanded 

Fig. 6. A partial strike tree focusing on protocol vulnerability exploitation 

Fig. 6 illustrates a partial strike tree that focuses on vulnerabilities in the SCADA 
protocols found in the target network. The root of this tree also represents goal of 
attacker and the state. The next layer of nodes represents the protocol (or protocols) 
used to attack the target. Layer three identifies the failure mechanism (the 
vulnerability) based on data communication security goals as they are outlined in 
IEC/TR 62210. [9] The final layer represents the exploit capabilities of the attacker.  

Notice the overall similarity and close mapping between Fig. 5 and 6. The first 
layer of nodes represents the object (or objects) under attack. The second layer 
identifies the failure mechanisms (the vulnerabilities) and the third layer represents 
the exploit capabilities of the attacker. 

We use attack trees to estimate the strike state’s time for an attacker to: exploit 
confidentiality, exploit integrity or exploit availability. Child nodes are based on RFC 
3552 [16] and US-CERT publications [17]. 

Unlike traditional capabilities based attack trees, subject matter experts estimate 
the time they would need to successfully craft a working exploit for attacks belonging 
to one or more of the strike state’s categories. These times are used in calculating the 
strike state time when building estimated MTTC. 

7   Building MTTC Intervals 

Ideally, MTTC intervals should be based on predominant strategies used by attackers. 
Until reliable statistical data is available, each attack path is given an equal 

probability and the attack path model is truncated to allow only one penetration of 
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each network. In practice we expect this not to be true; however, this suffices to 
provide a metric whereby two or more systems can be compared. Results of Honeynet 
research would be extremely useful for this task. Each attack path time is estimated 
for each attacker skill level and the interval for each skill level is built from the 
shortest and longest attack path time. The product of each attack path probability and 
its mean time are summed to produce a mathematical expectation for the MTTC 
itself. 

8   Case Study 

A utility company wanted to compare mitigating solutions at one of its facilities to 
determine how to best focus its resources. The system had a topology similar to the 
system shown in Fig. 2 with an average of 6 and 10 vulnerabilities per node on the 
EN and PCN respectively. (Note: similar topologies are not required by the 
framework and are only used for illustrative purposes). Firewall reviews on both the 
Internet facing and Target Network facing firewalls were done on an annual basis. 
There is limited manpower and financial resources for security and management 
wants to evaluate two differing approaches. The first is to focus on patching systems 
on the primary enterprise network that makes up Zone 2. The second is to increase 
firewall rules reviews from yearly to quarterly on the Internet facing firewall. State 
times for the baseline system are given in table 2. 

Table 2. State times (in days) for the baseline system 

 B1 P1 B2 P2 C I A 
Expert 4.6 4.6 4.0 4.0 1.0 4.0 1.0 
Intermediate 5.2 5.2 4.5 4.5 1.0 4.5 1.0 
Beginner 9.5 9.5 8.6 8.6 1.0 8.6 1.0 

IT security determined that the number of man hours it would take to reduce the 
average number of vulnerabilities on the enterprise network from 6 to 3 per node is 
about the same man hours as it would take to do firewall reviews on the Internet 
facing firewall on a quarterly basis. State times for both of these approaches are given 
in tables 3 and 4 respectively. 

Table 3. State times (in days) for increased patching frequency of the enterprise network nodes 
reducing the average number of vulnerab ilities per node to 3 

B1 P1 B2 P2 C I A 
Expert 5.2 5.2 4.0 4.0 1.0 4.0 1.0 
Intermediate 5.8 5.8 4.5 4.5 1.0 4.5 1.0 
Beginner 13.9 13.9 8.6 8.6 1.0 8.6 1.0 
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Table 4. State times (in days) for qurterly firewall reviews on the Internet facing firewall 

B1 P1 B2 P2 C I A 
Expert 5.6 4.6 4.0 4.0 1.0 4.0 1.0 
Intermediate 9.1 5.2 4.5 4.5 1.0 4.5 1.0 
Beginner 33.0 9.5 8.6 8.6 1.0 8.6 1.0 

MTTC levels were estimated for the baseline system and both proposals and are 
shown in table 2. 

Table 5. Estimated MTTC values (in days) for each attacker skill level 

 Expert Intermediate Beginner 
Baseline 16.3 18.3 33.2
Increased Patching 16.8 19.2 39.8 
Increased Rules Reviews 16.9 22.2 56.7 

IT security determined that both approaches could be implemented using existing 
resources (primarily human) and each was estimated to cost about $15,000. The 
resulting cost per day of MTTC being bought (the cost / ∆ MTTC ratio) for each 
attacker skill level is shown in table 6. 

Table 6. Cost / ∆MTTC ratios for each attacker skill level 

 Expert Intermediate Beginner 
Increased Patching $30,000 $16,667 $2,273 
Increased Rules Reviews $25,000 $3,846 $638 

Within the framework of an overall qualitative risk assessment, this information 
could be used to decide if increased rules reviews on the Internet facing firewall is the 
most effective use of company resources. Like in the case of safe testing, the real 
strength of this methodology is not for obtaining absolute values of security, but 
rather relative values for comparing differing systems and solutions.  

9   Future Research 

Currently the STEA methodology focuses primarily on vulnerabilities of a software 
nature which are exploited by attacks launched from the Internet. However, we 
hypothesize that it can be further modified to estimate the state times for other 
vulnerabilities including human related vulnerabilities (i.e. poor password selection) 
and protocol vulnerabilities resulting in MTTC intervals for a broad range of 
vulnerabilities and therefore mitigating actions. 

Consider the scenarios where a threat agent breaches a plant's physical security and 
then logs onto an Human Machine Interface and strikes the confidentiality or integrity 
of the system. Or consider another attacker who takes a sledge hammer to a remotely 
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situated target device and strikes availability. These scenarios involve four states: 
breach, strike confidentiality, strike integrity and strike availability - remarkably 
similar to the states in the SSM presented in this paper. We therefore expect that our 
SSM can be modified to identify attack paths for other attack classes such as social 
engineering or physical attacks. Similarly, we also expect that the STEA can be 
modified to estimate state times for other vulnerability classes such as protocol and 
human vulnerabilities. Identifying and describing a set of models that cover the entire 
attack surface of the target system is an area of considerable future research and this is 
where we are pursuing a Hierarchical Holographic Model which will act as the glue to 
unify our models. 

Relevant statistical data to set the MMTC intervals confidence levels also needs to 
be collected and promising sources for this statistical data are the Honeynet Project 
[19] and the results of penetration team testing in the field. Both will help us to 
improve our state time estimations and to identify predominant attacker strategies. 
Our experience with the Industrial Security Incident Database leads us to believe that 
this may even help identify how an attacker’s strategies are modified according to 
environmental conditions (network topology, defenses, etc) and attacker skill levels. 

We hypothesized that the distribution of attackers with skills ranging from 
beginner to expert to be normal distribution. Recent research has us pursuing key risk 
indicators to identify the key skills and resources used for each of the three attacker 
levels and to relate these to the attacker’s skill level through learning curve theory. 

10   Conclusions 

The finding of this preliminary research indicates that MTTC could be an efficient yet 
powerful tool for a comparative analysis of security environments and solutions. 

The selection of time as the unit of measurement is paramount to the model’s 
strength. Time intervals can be used to intelligently compare and select from a broad 
range of mitigating actions. Two or more entirely different mitigating solutions can be 
compared and chosen based on which solution has the lowest cost in dollars per day 
and yet meets or exceeds a benchmark MTTC.  

Another important relationship that can be realized is how hard or weak a system is 
as seen by the attacker compared with peer systems in the same industry. MTTC 
industry averages (and other averages) can be calculated over time giving and can be 
used for making peer comparisons. Having MTTC intervals above the average should 
imply that an opportunistic attacker is more likely to move on to another target 
whereas MTTC intervals below the average should imply the opposite. However, this 
is also an area of considerable research. 
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Abstract. Safety critical and business critical systems are usually con-
trolled by policies with the objective to guarantee a variety of safety, live-
ness and security properties. Traditional model checking techniques allow
a verification of the required behaviour only for systems with very few
components. To be able to verify entire families of systems, independent
of the exact number of replicated components, we developed an abstrac-
tion based approach to extend our current tool supported verification
techniques to such families of systems that are usually parameterised by
a number of replicated identical components. We demonstrate our tech-
nique by an exemplary verification of security and liveness properties
of a simple parameterised collaboration scenario. Verification results for
configurations with fixed numbers of components are used to choose an
appropriate property preserving abstraction that provides the basis for
an inductive proof that generalises the results for a family of systems
with arbitrary settings of parameters.

Keywords: Formal analysis of security and liveness properties, security
modelling and simulation, security policies, parameterised models.

1 Introduction

In a typical policy controlled system, a set of policy rules, posing restrictions on
the system’s behaviour, is used to enforce the required security objectives, such as
confidentiality, integrity and availability. For safety critical systems as well as for
business critical systems or parts thereof, assuring the correctness - conformance
to the intended purpose - is imperative. These systems must guarantee a variety
of safety, liveness and security properties.

The problem approached. Traditional model checking techniques can be used to
analyse such systems and to understand and verify how they behave subject
to different policy constraints. However, because of well known state explosion
problems, the usage of these techniques is limited to systems with very few
components. In this paper we propose an extension of these techniques to a
particularly interesting class of systems called parameterised systems. A para-
meterised system describes a family of systems that are finite-state in nature but
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scalable. A formal specification of a parameterised system thus covers a family of
systems, each member of which has a different number of replicated components.
Instances of the family can be obtained by fixing the parameters. Extensions of
model checking techniques are required that support verification of properties
that are valid independently of given concrete parameters.

Contributions. To be able to verify entire families of critical systems, indepen-
dent of the exact number of replicated components, we developed an abstraction
based approach to extend our current tool supported verification techniques to
such parameterised systems. Abstraction is a fundamental and widely-used ver-
ification technique. It can be used to reduce the verification of a property over a
concrete system, to checking a related property over a simpler abstract system
[1]. In this paper however we need an inductive proof on the construction of
the behaviour of the parameterised system to show that it results in identical
abstract system behaviour for any given parameter configuration. This allows
the verification of parameterised systems by constructing abstract systems that
can be model checked.

In the case of our abstraction based approach, the key problem is the choice of
an appropriate abstraction that, (1) is property preserving, (2) results in identical
abstract system behaviour for any given parameter configuration, and, (3) is
sufficiently precise to express the required properties at the chosen abstraction
level. To solve this problem, we

– compute the system behaviour and verify the required properties for some
configurations with fixed numbers of components;

– we then use the results to choose an appropriate property preserving ab-
straction that results in identical abstract system behaviour for any given
parameter configuration;

– based on this abstraction, we provide an inductive proof (by hand) that
generalises the results for a family of systems with arbitrary settings of pa-
rameters.

In this paper we demonstrate our technique by an exemplary verification of
security and liveness properties of a simple parameterised collaboration scenario.

The subsequent paper is structured as follows. In Sect. 2 we review some
related work. Section 3 introduces a collaboration scenario that we will use
throughout this paper to illustrate the usage of the proposed method for analy-
sis of parameterised models. Section 4 describes the formal modelling technique,
the abstraction based verification concept and the verification tool while Sect. 5
presents an exemplary verification of the collaboration scenario. Finally, the pa-
per ends with conclusions and an outlook in Sect. 6.

2 Related Work

Analysis of security policies. The research in the field of security policies has
gained increasing attention in the past few years. Many research papers ap-
peared that investigated security policies on its own and abstracted from the
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systems needed to enforce these policies. These activities concentrated on the
examination of specific properties of policies like consistency, freedom of con-
flicts, information flow implications and effects to system safety. This allows
shifting the attention from specifics of computer system towards the analysis of
properties that are inherent to the policy itself.

In the information flow analysis approach presented in [2] for the SELinux
system, a labelled transition system (LTS) is generated from the policy speci-
fications that models the information flow policy. Temporal logic formulas are
used to specify the security goals. The NuSMV (http://nusmv.irst.itc.it/)
model-checker verifies the security goals on this LTS.

A method to enforce rigorous automated network security management using
a network access control policy is presented in [3]. This method is illustrated
using examples based on enforcement strategy by distributed packet filtering
and confidentiality/authenticity goals enforced by IPsec mechanisms.

In [4] a model-based approach focussing on the validation of network security
policies and the interplay of threats and vulnerabilities and system’s behaviour
is proposed. This approach is based on Asynchronous Product Automata (APA)
[5]. APA are also used as a basis of the work presented in this paper.

Verification approaches for parameterised systems. An extension to the Murϕ
verifier to verify systems with replicated identical components through a new
data type called RepetitiveID (with restricted usage) is presented in [6]. The
verification is performed by explicit state enumeration in an abstract state space
where states do not record the exact numbers of components. Murϕ automat-
ically checks the soundness of this abstraction and translates the system de-
scription to an abstract state graph for a system of a fixed size. During the
verification of this system, Murϕ uses a run-time check to determine if the re-
sult can be generalised for a family of systems. The soundness of the abstraction
algorithm is guaranteed by the restrictions on the use of repetitiveIDs. These
restrictions allow Murϕ to decide which components are abstractable using the
repetition constructors, enforce symmetry in the system, which enables the au-
tomatic construction of abstract states, and, enforce the repetitive property in
the system, which enables the automatic construction of the abstract successors.
A typical application area of this tool are cache coherence protocols. Many cache
coherence protocols satisfy the above restrictions.

The aim of [7] is an abstraction method through symmetry which works also
when using variables holding references to other processes which is not possi-
ble in Murϕ. An implementation of this approach for the SPIN model-checker
(http://spinroot.com/) is described.

In [8] a methodology for constructing abstractions and refining them by
analysing counter-examples is presented. The method combines abstraction,
model-checking and deductive verification and in particular, allows to use the set
of reachable states of the abstract system in a deductive proof even when the ab-
stract model does not satisfy the specification and when it simulates the concrete
system with respect to a weaker simulation notion than Milner’s. The tool InVeSt
supports this approach and makes use of PVS (http://pvs.csl.sri.com/) and
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SMV (http://www.cs.cmu.edu/ modelcheck/smv.html). This approach how-
ever does not consider liveness properties.

In [9] a technique for automatic verification of parameterised systems based on
process algebra CCS [10] and the logic modal mu-calculus [11] is presented. This
technique views processes as property transformers and is based on computing
the limit of a sequence of mu-calculus formula generated by these transformers.

The above-mentioned approaches demonstrate, that finite state methods com-
bined with deductive methods can be applied to analyse parameterised systems.
The approaches differ in varying amounts of user intervention and their range
of application. A survey of a number of approaches to combine model checking
and theorem proving methods is given in [12].

Characteristic of our approach is the flexibility of abstractions defined by
language homomorphisms and the consideration of liveness properties.

3 Collaboration Scenario

There are manifold uses and aspects of the terms policy in general and security
policy specifically. In the context of this paper we use the concepts of the eX-
tensible Access Control Markup Language (XACML [13]) to express a security
policy, but for readability we use a much simpler syntax.

We consider three roles (classes of collaboration partners with a uniform
security policy) in this scenario namely trustworthy clients (TC), observers
(OB) and a manager (M) representing the collaboration infrastructure. There
is only one role player for the manager but an unspecified number of role play-
ers for the two types of clients. The set of subjects is defined by subject =
{trustworthy client, observer,manager}. For our collaboration scenario we now
assume that a group of trustworthy clients hold a session. The session can be
in state public (pub) or confidential (conf). The set of possible session states
is thus defined by s state = {pub, conf}. The initial session state is pub. We
furthermore assume that the set of possible actions is defined by action =
{join, leave, close, open} and that the following policy rules govern the session.

rule1 When the session is in state pub, then observers are permitted to join.
rule2 Observers are permitted to leave at any time.
rule3 When no observers participate in the session, then the manager can close

the session (change state to conf).
rule4 The manager can open the session (change state to pub) at any time.

To be able to decide whether observers are currently participating in a session,
we furthermore use a counter o count ∈ N0 for the current count of observers in
the session. The initial value of o count is 0. We don’t consider any actions of
the trustworthy clients in the model because we consider this irrelevant for the
security goals.

In XACML a policy is given by a set of rules and a rule-combining algorithm.
Each rule is composed of a condition, an effect, and a target. The conditions
(predicates on attributes of subject, resource, action) associated with a policy
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rule specify when the policy rule is applicable. If the condition returns False, the
rule returns NotApplicable. If the condition returns True, the value of the effect
element (Permit or Deny) is returned.

For better readability we use an abbreviated syntax in this paper and define
the rules from our example now by

rulex : subject× s state× action× o count→ {permit, deny, not applicable}.

rule1(s, a, z, c) =
{

permit | s = observer ∧ a = join ∧ z = pub
not applicable | else

rule2(s, a, z, c) =
{

permit | s = observer ∧ a = leave
not applicable | else

rule3(s, a, z, c) =
{

permit | s = manager ∧ a = close ∧ c = 0
not applicable | else

rule4(s, a, z, c) =
{

permit | s = manager ∧ a = open ∧ z = conf
not applicable | else

The rule-combining algorithm we use to derive the policy result from the given
rules is the permit-overrides algorithm, if a single permit result is encountered,
then the combined result is permit. So we define the policy for our example now
by

policy : subject× action× s state× o count→ {permit, deny}.

policy(s, a, z, c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
permit | rule1(s, a, z, c) = permit ∨

rule2(s, a, z, c) = permit ∨
rule3(s, a, z, c) = permit ∨
rule4(s, a, z, c) = permit

deny | else
Generally, security policies have to guarantee certain security properties of a

system and moreover they must not prevent the system from working.
In our example we define the following security properties:

– the collaboration is in state conf only if no observer is present (security),
and

– always eventually state changes between pub and conf are possible (liveness).

These properties are formally verified in Sect. 5.

4 Verification of System Properties

Our operational finite state model of the behaviour of the given collaboration
scenario is based on Asynchronous Product Automata (APA), a flexible opera-
tional specification concept for cooperating systems [5]. An APA consists of a
family of so called elementary automata communicating by common components
of their state (shared memory).
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4.1 Formal Modelling Technique

We now introduce the formal modelling techniques used, and illustrate the usage
by our collaboration example.

Definition 1. An Asynchronous Product Automaton consists of

– a family of state sets Zs, s ∈ S,
– a family of elementary automata (Φe, ∆e), e ∈ E and
– a neighbourhood relation N : E → P(S)

S and E are index sets with the names of state components and of elementary
automata and P(S) is the power set of S.

For each elementary automaton (Φe, ∆e) with Alphabet Φe, its state tran-
sition relation is ∆e ⊆ ��s∈N(e)(Zs) × Φe × ��s∈N(e)(Zs). For each element of
Φe the state transition relation ∆e defines state transitions that change only the
state components in N(e). An APA’s (global) states are elements of ��s∈S(Zs).
To avoid pathological cases it is generally assumed that S =

⋃
e∈E(N(e)) and

N(e) �= ∅ for all e ∈ E. Each APA has one initial state q0 = (q0s)s∈S ∈
��s∈S(Zs). In total, an APA A is defined by

A = ((Zs)s∈S, (Φe, ∆e)e∈E, N, s0)

Finite state model of the collaboration scenario. The collaboration model
described in Sect. 3 is specified for the proposed analysis method using the
following APA state components :

S = {s state, o count} with Zs state = {pub, conf} and Zo count = N0,
q0 = (q0s state, q0o count) = (pub, 0).

The set of elementary automata E = {OB join,OB leave,M conf,M pub}
represents the possible actions that the subjects (manager and observers) can
take. These specifications are represented in the data structures and initial con-
figuration of the state components in the APA model. The lines in Fig. 1 between
state components and elementary automata represent the neighbourhood rela-
tion.

From Fig. 1 we conclude that N(e) = S for each e ∈ E.
For each e ∈ E we choose Φe = {#}. Therefore we can omit the middle compo-
nent of the state transition relation ∆e.

Using the abbreviation state = {pub, conf}, it holds ∆e ⊂ (state × N0) ×
(state×N0) for each e ∈ E.

In detail:
∆OBleave

= {((x, y), (x, y − 1)) ∈ (state×N0)× (state×N0) |
y > 0 ∧ policy(observer, leave, x, y) = permit}

∆OBjoin = {((x, y), (x, y + 1)) ∈ (state×N0)× (state×N0) |
y > maxOB ∧ policy(observer, join, x, y) = permit}

∆Mconf
= {((x, y), (conf, y)) ∈ (state×N0)× (state×N0) |
policy(manager, close, x, y) = permit}

∆Mpub
= {((x, y), (pub, y)) ∈ (state×N0)× (state×N0) |
policy(manager, open, x, y) = permit}

Note that this APA is parameterised by maxOB ∈ N0.
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OB join - observer join
collaboration,

OB leave - observer
leave collaboration,

M pub - manager
changes state to
pub,

M conf - manager
changes state to conf

Fig. 1. Collaboration model

Definition 2. An elementary automaton (Φe, ∆e) is activated in a state q =
(qs)s∈S ∈ ��s∈S(Zs) as to an interpretation i ∈ Φe, if there are (ps)s∈N(e) ∈
��s∈N(e)(Zs) with ((qs)s∈N(e), i, (ps)s∈N(e)) ∈ ∆e. An activated elementary au-
tomaton (Φe, ∆e) can execute a state transition and produce a successor state p =
(ps)s∈S ∈ ��s∈S(Zs), if qr = pr for r ∈ S \ N(e) and (qs)s∈N(e), i, (ps)s∈N(e) ∈
∆e. The corresponding state transition is (q, (e, i), p).

For example ((conf, 0), (M pub,#), (pub, 0)) is a state transition of our example.
As mentioned above, we omit # in the sequel.

Definition 3. The behaviour of an APA is represented by all possible coher-
ent sequences of state transitions starting with initial state q0. The sequence
(q0, (e1, i1), q1) (q1, (e2, i2), q2) (q2, (e3, i3), q3) . . . (qn−1, (en, in), qn) with ik ∈
Φek

represents one possible sequence of actions of an APA. qn is called the goal
of this action sequence.

State transitions (p, (e, i), q) may be interpreted as labelled edges of a directed
graph whose nodes are the states of an APA: (p, (e, i), q) is the edge leading from
p to q and labelled by (e, i). The subgraph reachable from the node q0 is called
the reachability graph of an APA.

Let Q denote the set of all states q ∈ ��s∈S(Zs) that are reachable from the
initial state q0 and let Ψ denote the set of all state transitions with the first
component in Q.

The set L ⊂ Ψ∗ of all action sequences with initial state q0 including the empty
sequence ε denotes the action language of the corresponding APA. The action
language is prefix closed. By definition q0 is the goal of ε.

The reachability graph of the example depends on the parameter maxOB ∈ N0;
its set of nodes is given by QmaxOB and its set of edges is ΨmaxOB.

It is QmaxOB ⊂ {pub, conf} ×N0 and ΨmaxOB ⊂ QmaxOB × E×QmaxOB.
The reachability graph formaxOB = 0 is shown in Fig. 2. The reachability graph
for maxOB = 1 is depicted by the solid lines in Fig. 3, whereas the dashed lines
in the same figure show the reachability graph for maxOB = 2.
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(pub,0)(conf,0)

M_conf M_pub

M_conf

Fig. 2. Reachability graph for maxOB = 0

(pub,0) (pub,2)(pub,1)(conf,0)

OB_joinM_conf

OB_leave

OB_join

M_pubM_conf OB_leave

Fig. 3. Reachability graphs for maxOB = 1 (solid lines) and maxOB = 2 (dashed)

For example ((pub, 0),M conf, (conf, 0))((conf, 0),M pub, (pub, 0)) is an ele-
ment of the action language.

4.2 Abstraction Based Verification Concept

Now behaviour abstraction of an APA can be formalised by language homomor-
phisms, more precisely by alphabetic language homomorphisms h : Σ∗ → Σ′∗.

By these homomorphisms certain transitions are ignored and others are re-
named, which may have the effect, that different transitions are identified with
one another. A mapping h : Σ∗ → Σ′∗ is called a language homomorphism if
h(ε) = ε and h(yz) = h(y)h(z) for each y, z ∈ Σ∗. It is called alphabetic, if
h(Σ) ⊂ Σ′ ∪ {ε}.

It is now the question, whether, by investigating an abstract behaviour, we
may verify the correctness of the underlying concrete behaviour. Generally under
abstraction the problem occurs, that an incorrect subbehaviour can be hidden
by a correct one. We will answer this question positively, requiring a restriction
to the permitted abstraction techniques [1].

As it is well known, system properties are divided into two types: safety (what
happens is not wrong) and liveness properties (eventually something desired
happens, e.g. availability) [14].

On account of liveness aspects system properties are formalised by ω-languages
(sets of infinite long words). So to investigate satisfaction of properties “infinite
system behaviour” has to be considered. This is formalised by so called Eilenberg
limits of action languages (more precisely: by Eilenberg limits of modified action
languages where maximal words are continued by an unbounded repetition of a
dummy action) [15].

The usual concept of linear satisfaction of properties (each infinite run of the
system satisfies the property) is not suitable in this context because no fairness
constraints are considered. We put a very abstract notion of fairness into the
satisfaction relation for properties, which considers that independent of a finitely
long computation of a system certain desired events may occur eventually. To
formalise such “possibility properties”, which are of interest when considering
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what we call cooperating systems, the notion of approximate satisfaction of
properties is defined in [15].

Definition 4. A system approximately satisfies a property if and only if each
finite behaviour can be continued to an infinite behaviour, which satisfies the
property.

For safety properties linear satisfaction and approximate satisfaction are equiv-
alent [15]. To deduce approximately satisfied properties of a specification from
properties of its abstract behaviour an additional property of abstractions called
simplicity of homomorphisms on an action language [16] is required. Simplicity
of homomorphisms is a very technical condition concerning the possible contin-
uations of finite behaviours.

For regular languages simplicity is decidable. In [16] a sufficient condition
based on the strongly connected components of corresponding automata is given,
which easily can be checked. Especially: If the automaton or reachability graph
is strongly connected, then each homomorphism is simple.

The following theorem [15] shows that approximate satisfaction of properties
and simplicity of homomorphisms exactly fit together for verifying cooperating
systems.

Theorem 1. Simple homomorphisms define exactly the class of such abstrac-
tions, for which holds that each property is approximately satisfied by the abstract
behaviour if and only if the “corresponding” property is approximately satisfied
by the concrete behaviour of the system.

Formally, the “corresponding” property is expressed by the inverse image of the
abstract property with respect to the homomorphism.

In the example of this paper the desired security properties are safety and
liveness properties. Generally there are more complex security properties. In [17]
and [18] it has been shown how authenticity, provability and confidentiality are
also treated in terms of prefix closed languages and property preserving language
homomorphisms.

4.3 Verification Tool

The Simple Homomorphism (SH) verification tool [5] is used to analyse the col-
laboration model for different concrete values of maxOB. It has been developed
at the Fraunhofer-Institute for Secure Information Technology. The SH verifica-
tion tool provides components for the complete cycle from formal specification to
exhaustive validation as well as visualisation and inspection of computed reach-
ability graphs and minimal automata. The applied specification method based
on Asynchronous Product Automata (APA) is supported by this tool. The tool
manages the components of the model, allows to select alternative parts of the
specification and automatically glues together the selected components to gener-
ate a combined model of the APA specification. After an initial state is selected,
the reachability graph is automatically computed by the SH verification tool.
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The tool provides an editor to define homomorphisms on action languages,
it computes corresponding minimal automata [19] for the homomorphic images
and checks simplicity of the homomorphisms.

Model checking. If it is required to inspect some or all paths of the graph to
check for the violation of a security property, as it is usually the case for liveness
properties, then the tool’s temporal logic component can be used. Temporal
logic formulae can also be checked on the abstract behaviour (under a simple
homomorphism). The method for checking approximate satisfaction of properties
fits exactly to the built-in simple homomorphism check [5].

The SH verification tool successfully has been applied in several security
projects such as Valikrypt (http://www.bsi.bund.de/fachthem/valikrypt/)
and CASENET1.

5 Verification of the Collaboration Scenario

An outline of our verification concept for parameterised models, exemplary re-
alised for the collaboration scenario, is given in Fig. 4.

figure 1
definition 1

modell (APA)
parameterised

figure 2 (b)
definition 3

behaviour
extended

figure 2 (a)
definition 3

behaviour

figure 4

abstract representation

abstract representation

P1, P2

properties

P1’, P2’

   properties
’corresponding’

theorem 1 lemma 4
proof:

proof: lemma 2
simple homomorphism

induction
conclude by

SH verification tool
proof by 

by SH verification tool
computation and proof
simple homomorphism

parameterorder
induction on

SH verification tool
computation by 
small parameters

Fig. 4. Verification concept for parameterised APA

The abstraction based verification concept introduced in Sect. 4.2 and the
tool support described in Sect. 4.3 cover the part marked by solid lines in Fig. 4
whereas we now prove the components marked by dashed lines.

1 The EU project CASENET (http://www.casenet-eu.org/) has provided a tool-
supported framework for the systematic specification, design and analysis of e-
commerce and e-government transactions to produce protocols with proven security
properties, and to assist in code generation for these protocols.
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Using the graphs of Fig. 2 and Fig. 3 as induction base we will now prove
Lemma 1 below by induction on maxOB. We use the abbreviations
Tmjoin for ((pub,maxOB), OB join, (pub,maxOB + 1)) and
Tmleave for ((pub,maxOB + 1), OB leave, (pub,maxOB)).

Lemma 1. (a) QmaxOB = {(pub, i)|0 ≤ i ≤ maxOB} ∪ {(conf, 0)}
(b) ΨmaxOB+1 = ΨmaxOB ∪̇ {Tmjoin, Tmleave}

Proof. Figure 3 shows the reachability graph with maxOB = 1. Together with
Fig. 2, Fig. 3 proves the induction base.
Induction step.
By inspection of the 4 elementary automata we get: ΨmaxOB ⊂ ΨmaxOB+1.
Starting from the nodes in QmaxOB from maxOB + 1 only the additional tran-
sitions Tmjoin and Tmleave are possible.

*+
It follows by induction:

Lemma 2. For each maxOB ∈ N0 the corresponding reachability graph is finite
and strongly connected.

Let LmaxOB ⊂ Ψ∗
maxOB denote the action language, then using Lemma 1(b) we

can derive

Lemma 3. (a) LmaxOB ⊂ LmaxOB+1 and
(b) for each u ∈ LmaxOB+1: h(u) ∈ LmaxOB with the homomorphism

h : Ψ∗
maxOB+1 → Ψ∗

maxOB

with h(Tmjoin) = ε = h(Tmleave) and h(x) = x for x ∈ ΨmaxOB

(c) The goal of u is identical to the goal of h(u) or
the goal of u is (pub,maxOB + 1) and the goal of h(u) is (pub,maxOB).

Proof of Lemma 3 (b) by induction on the length of u.
Induction base. Lemma 3(b) is true for u = ε. Note that by definition the goal
of the empty transition sequence is equal to the initial state of the APA.
Induction step. Consider ua ∈ LmaxOB+1 with a ∈ ΨmaxOB+1. From induction
hypothesis there are 2 different cases:
Case 1. The goal of u is equal to the goal of h(u) and therefore an element of
QmaxOB.

Therefore a ∈ ΨmaxOB ∪ {Tmjoin}.
For a ∈ ΨmaxOB holds: h(ua) = h(u)h(a) = h(u)a
Therefore from induction hypothesis h(ua) ∈ LmaxOB and goals of ua and

h(ua) are equal.
For a=Tmjoin the goal of u and therefore also the goal of h(u) is (pub,maxOB).
Now it holds that h(ua) = h(u)h(a) = h(u).
From induction hypothesis we get that h(ua) ∈ LmaxOB and goal of ua is

(pub,maxOB + 1) and goal of h(ua) is (pub,maxOB).

Case 2. The goal of u is (pub,maxOB + 1) and goal of h(u) is (pub,maxOB).
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Then: a = Tmleave

And so:
h(ua) = h(u)h(a) = h(u) ∈ LmaxOB and ua and also h(ua) have the same goal,
namely (pub,maxOB). *+

Now from Lemma 3 (a) we get LmaxOB = h(LmaxOB) ⊂ h(LmaxOB+1) and from
3 (b) we get h(LmaxOB+1) ⊂ LmaxOB together LmaxOB = h(LmaxOB+1). For
each homomorphism f : Ψ∗

maxOB+1 → Σ′∗ with f(Tmjoin) = ε = f(Tmleave) it
holds that: f(LmaxOB+1) = f(h(LmaxOB+1)) = f(LmaxOB) and so:

Lemma 4. With the assumptions above holds: f(LmaxOB+1) = f(LmaxOB)

5.1 Proving Security and Liveness of the Collaboration Example

To consider our example’s correctness we have to observe the state changes
between pub and conf . So we define an appropriate homomorphism
c : Ψ∗

maxOB → Ψ∗
maxOB by

c(((x1, x2), e, (y1, y2))) = ((x1, x2), e, (y1, y2)) if x1 �= y1 , and
c(((x1, x2), e, (y1, y2))) = ε if x1 = y1 .

This homomorphism c fulfils the condition of Lemma 4 and therefore we get
c(LmaxOB+1) = c(LmaxOB).

This implies c(LmaxOB) = c(L0) for each maxOB ∈ N0.

21

((conf,0),M_pub,(pub,0))

((pub,0),M_conf,(conf,0))

Initial state is 1.
All states are final states.

Fig. 5. Minimal automaton of c(L0)

It is easy to see, that the automaton of Fig. 5 is the minimal automaton of
c(L0).

This automaton shows that the collaboration is in state conf only if no ob-
server is present (P1). Moreover always state changes between pub and conf are
possible (P2).

By Lemma 2 c is simple on each LmaxOB and therefore (Theorem 1) corre-
sponding properties P1’ and P2’ hold for each concrete behaviour LmaxOB. In
content P1’ is the same as P1. P2’ is the property that always eventually state
changes between pub and conf are possible. The difference between P2 and P2’
is caused by actions of the concrete behaviour which are mapped to ε by the
homomorphism c. P1’ and P2’ are the desired properties of the collaboration as
formulated in Sect. 3.
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6 Conclusions and Future Work

Based on property preserving abstractions (simple homomorphisms) we com-
bined our tool supported finite state methods with induction proofs to verify
security and liveness properties of a parameterised system.

We have shown how abstractions serve as a framework for individual proofs
of problem specific security properties. So our results are no contradictions to
well known undecidability properties of general security models e.g. Harrison-
Ruzzo-Ullman.

This paper focussed on properties which are independent of concrete para-
meter values. Considering parameterised abstract behaviours we will extend our
method to verify parameter dependent properties. The induction proofs in this
paper are “handmade”. So it would be desirable to support such proofs by a the-
orem prover. For that purpose our system specifications based on parameterised
APA have to be represented in a corresponding theorem prover.

Acknowledgements. We would like to thank Carsten Kunz, Carsten Rudolph
and Björn Steinemann for cooperation on early versions of this work and many
productive discussions on the subject.
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Abstract. The management of security for large and complex environments still
represents an open problem and the policy-based systems are certainly one of the
most innovative and effective solution to this problem. The policy, that at low
level is expressed by sets of rules, becomes crucial for the consistency of the sys-
tems to be protected and it is necessary to check it for correctness. This paper
presents a set-based model of rules that permits the static conflict detection and
an axiomatic model of conflict resolution leading to semi-lattices theory to solve
inconsistencies. We proved the effectiveness of the theory implementing an ex-
tensible tool supporting security officers in creating rules by providing an easy
environment to identify the conflicts and to use manual as well as automatic res-
olution strategies.

Keywords: security policy model; policy conflicts detection; policy conflicts res-
olution; firewall rules analysis; policy specification.

1 Introduction

The management of security for large and complex environments still represents an
open problem and the policy-based systems are certainly one of the most innovative
and effective solutions to this problem. Main characteristics of policy-based systems
are depicted in the document called “Terminology for policy-based management” [1] in
which the term policy is defined as: “a definite goal, course or method of action to guide
and determine present and future decisions. ‘Policies’ are implemented or executed
within a particular context, such as the policies defined within a business unit”, and as
“a set of rules to administer, manage, and control access to network resources”.

The policy becomes crucial for the consistency of the systems to be protected and it
is necessary to check it for correctness. The best approach consists in assisting security
officers in solving conflicts during the specification, eliminating the inconsistencies be-
fore deploying the configurations. The problem is that tools enabling the analysis of the
policy are still missing or of limited usage. The reasons of this lack can be found in the
absence of mathematical models that can describe in a precise manner the anomalies
and conflicts that can happen between two or more rules. If some work can be found in
the field of the detection [2], there is no available study trying to understand the resolu-
tion process and its “natural” characteristics, in order to correctly and coherently model
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Commission under contracts IST 002314 and 026600.

V. Gorodetsky, I. Kotenko, and V.A. Skormin (Eds.): MMM-ACNS 2007, CCIS 1, pp. 242–247, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Algebraic Models to Detect and Solve Policy Conflicts 243

it. These studies can help to derive automatic processes to solve inconsistencies even
without the human intervention strongly reducing the specification time. For this, we
consider our work an important progress in the field of policy conflicts analysis, pro-
viding a set-based model of rules to allow the detection of the conflict and an axiomatic
model of conflict resolution leading to semi-lattices theory to solve inconsistencies.
Previous work in modeling detection and resolution [9] is extended to include not only
the Action-Based resolution strategy but all the techniques already described in litera-
ture, defining the criteria for an acceptable resolution method. Additionally, theoretical
considerations are presented to help in developing a tool to assist the administrator in
identifying the conflicts and resolving them. The tool is able to aggregate the rules using
semi-lattices instead of simple ordered lists of rules. In fact, these algebraic structures
permit an accurate definition of rules relationships for conflict purposes.

The paper is organized as follows: in Sec. 2 it is presented the background, some
related works and the motivations; in Sec. 3 it is described the model for the conflict
detection and in Sec. 4 the model for the conflict resolution; in Sec. 5 it is introduced
the tool and its main characteristics; finally, in Sec. 6 we present our conclusions and
we briefly sketch plans for future work.

2 Motivation and Related Work

Conflicts detection and resolution is one of the most interesting research field in the se-
curity area, the choose of what action have to be performed if a conflict arise has carried
to the development of several methods and techniques dealing with policy classification
and verification. deal with general management of policies. In [3] policy inconsisten-
cies in role-based management framework are classified and techniques are presented
to solve them. In [4] Dunlop combines deontic logic with temporal operators. Conflicts
are classified in four category and the detection is distinct in two cases: static conflict,
incongruence found during the initialization phase and dynamic conflicts, potential con-
flict that is quite unpredictable and is the result of a run-time action. Even if it is different
from our work, this model is interesting for conflicts classification.

Others work are focused on filtering rules. Al-Shaer and Hamed [2], propose a model
in which a rule corresponds to a row of a firewall’s table. They model rules as tuples
of conditions and identify five possible relation between two rule: completely disjoint,
partially disjoint, exactly matched, inclusively matched and correlated in function of the
reciprocal relations of conditions (using standard set operation such as subset, superset
and equality). Additionally, the authors, define four possible anomalies between two
rules related with the priority of the rules in the firewalls table: Shadowing, Correlation,
Generalization, Redundancy. This approach is useful to detect and manually resolve
policy (using trees) conflicts but is bounded with the priority of the rules. Furthermore,
we identified in this approach a main incongruence in their mathematical model. The
categories they identified are not completely describing all the possible cases because
they only consider the relation of subset, superset, equality and different (i.e., none of
previous) but, to achieve completeness it is also necessary to split the ‘different’ case
in none of previous but intersecting and none of previous and non-intersecting. Since
we model rules conditions as sets (using set operations to understand their reciprocal
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relations), this issue is naturally solved. Additionally, semi-lattices are more compact
and effective to convey resolution information.

Bandara et al. [7] present an interesting application of augmented logic to firewall
analysis able to cover at least all the cases already analyzed by Al-Shaer and Hamed.
Uribe and Cheung [8] present a constrain logic based analysis of IDS and firewall in
a distributed scenario. Main ideas of this paper (e.g., the filter() function) can
be also applied to a generalization of our approach to distributed firewalls. Mayer et al.
developed the second generation of firewall analysis tools, the “Firewall Analyzer” (FA)
[6]. Their tool is one of our reference points to evaluate the effectiveness and validity
of our model. We theoretically proved that we can answer to many of their queries
(NAT is not covered yet), and we are currently implementing them. All these papers are
designed and limited to firewall analysis and they are not so easily extensible to more
general cases nor focus on the general instance of conflict resolution. Nevertheless we
started from the firewall examples to compare our approach in a field where concrete
results are already available.

3 A Model for Conflict Detection

In this section we summarize the results in [9] to model rules for detection purposes.
Since a condition in a particular selector (e.g., a particular field such as IP addresses)
defines the subset of allowed values (i.e., for which it is evaluated to true), it is possible
to state that a condition in a given selector set S, is a subset c of S. To consider different
selectors (e.g., IP addresses and ports) we used Cartesian product obtaining a model in
which rule conditions are hyper-rectangles (selection conditions). Correctness is guar-
anteed by the important result stating that the power set (i.e., the set of all the subsets)
of a given set is a boolean algebra endowed with standard operation of intersection (∩)
and union (∪). Introducing the actions, a rule can be represented as a function that asso-
ciates a selection condition to a subset of an action set A. For this a rule can be written
as a couple selection condition-action (i.e., r = (C, a)). A policy “that is expressed by
means of a set of rules” can be defined as a piecewise function.

Given two policy rules r1 = (C1, a1) and r2 = (C2, a2) a policy conflict occurs if
C∩ = C1 ∩ C2 �= ∅ and a1 �= a2. In other words, the policy conflict happens if the
selection conditions of the two rules intersect (i.e., when they can be activated simulta-
neously), but they do not specify the same set of actions. The only region where errors
originate is C∩. Indeed, in the regions out of the intersection there are no conflicts be-
cause it is clear which actions to apply. InC∩ it is impossible to define a policy function
since for each element of the domain it is needed the association to only one element of
the codomain. This definition is more powerful than a classification because it relies on
set properties and all the possible rules relative scenarios are naturally identified. It is
worth noting that there is some cases in which different actions not necessarily conflict.
In these cases, it is possible to define another action set in which previous definition
apply. When some actions can be enforce simultaneously we already showed that the
action set can be extended using the Cartesian product in the action set A [9]. In other
cases, when is possible to define an equivalence relation r, we work on the quotient set
A/r where our assumption still holds.
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4 A Model for Conflict Resolution

Different methods for conflict resolution are presented in literature [10]: the prioritiza-
tion of the rules based on the order in the database, also called “First Matching Rule”
(FMR), the Deny Take Precedence (DTP), if the actions or policy rule more restrictive
are preferred and the Most/Least Specific Take Precedence (MSTP/LSTP), if the policy
rule with the most/least specific condition is preferred. In a previous work we already
addressed the modeling of the Action-Based resolution strategy, an extension of DTP.
Here we present the generalization of the semi-lattice based technique [9] .

From these examples, it is possible to derive the types of information that are used in
the process of resolution: the conditions (for MSTP/LSTP); the actions (for DTP) and
external data (for FMR). Therefore, the model of rules used for the detection must be
extended using the external data. Introducing the set D, called the external data space,
rules become r = (d, C, a) ⊆ D × S ×A = R. We callR the rule space.

The objective of this treatment is an axiomatic definition of the resolution process.
First, we start from an empirical consideration: the resolution must be the task that
permit the definition of the action to be applied when two rules conflict. By modeling the
resolution as an abstract operation “◦” in the rule spaceR, the binary conflict resolution
method is a function such that, given two conflicting rules r1, r2 ⊆ R, with r1 =
(d1, C1, a1), r2 = (d2, C2, a2), it returns another rules that applies where original rules
conflict, i.e.,: ◦ : R×R −→ R such that r1 ◦ r2 �−→ r1,2 = (d1,2, C1 ∩ C2, a1,2).

It is also possible to impose some natural restrictions to this operation. The first prop-
erty required from an application describing the interactions between rules is the asso-
ciativity, i.e., ∀r1, r2, r3 ∈ R : r1 ◦ (r2 ◦ r3) = (r1 ◦ r2)◦ r3. This characteristic reflects
the fact that the composition is done from a static point of view: conflicts identified in a
particular area are resolved independently from the order in which rules are composed.
Another important property is the commutativity, i.e., ∀r1, r2 ∈ R : r1 ◦ r2 = r2 ◦ r1.
Even if commutativity is the less obvious property, it always holds if it the external
data space is constructed correctly (e.g., including the priorities makes the First Match-
ing Rule strategy commutative). For completeness, we impose to the “◦” operation the
idempotence, i.e., ∀r ∈ A : r ◦ r = r, that is, a rule is never in conflict with itself. The
algebraic structure satisfying previous axioms is a semi-lattice [11]. The three axioms
univocally identify a well-formed resolution strategy.

Given n rules {rk}i∈Zn
and all the composition of M = {rI}I∈2Zn , it easy to show

that M is a semi-lattice respecting associativity, commutativity and idempotence. In
general, a set of rules can be completed to a semi-lattice by adding all the compositions
of rules. Clearly, the semi-lattice is built in function of the actual rules.

Semi-lattices can be viewed as partially ordered set and for this reason they can be
represented as cover graphs having only one terminal node. In fact, the following binary
relation on (R, ◦),≤⊆ R : r1 ≤ r2 ⇐⇒ r1◦r2 = r2 defines a natural order from which
results that r1 ≤ r2 implies that C1 ⊇ C2. Additionally, if a resolution strategy uses
actions (solely or in conjunction with conditions) then it is possible to deduce a semi-
lattice structure for the actions too. In fact, if R is a semi-lattice, let rh = (dh, Ch, ah)
and rk = (dk, Ck, ak) be two rules such that rh ≤ rk, we have Ch = Ck ⇒ ah ≤ ak.
If the resolution method uses the actions together with external data, it is possible to
deduce a semi-lattice structure only for D × A (but if D is a semi-lattice too, even the
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action set is a semi-lattice). All the properties above can be used as criteria to evaluate if
a resolution strategy is suitable. The semi-lattice assumption is not too abstract, in fact,
the sequence of rules ordered by means of integers form a semi-lattice (a total ordered
set is a semi-lattice) and boolean algebras (i.e., the algebraic structure of conditions) is
a semi-lattice too [11]. Additionally, compared with Hamed and Al-Shaer trees used for
resolution, semi-lattice are more compact and expressive.

A tool implementing this model can be optimized in many ways. In fact, even though
the maximum number of rules is exponential, in the practical cases it is not necessary to
include all the compositions. First, it is not necessary to include the compositions having
empty selection condition (they never apply). Then, two equivalent rules (originals or
compositions) do not add any new information, so one of them can be dropped. Even
the order relation can be used to reduce the final number or rules. In fact, if rh ≤ rk
then ∀i1, · · · , ik ∈ Zn \ {h, k} : rh ◦ rk ◦ rk1 ◦ · · · ◦ rkk ≡ rk ◦ rk1 ◦ · · · ◦ rkk and one
of them can be eliminated. The last case to consider is the shadowing. If a rule rh hides
a rule rk, the rk does not add any information. For this it is possible to eliminate rk and
all its compositions.

Furthermore, rules enforcing the same actions are not in conflict and, for this, they
can be (often) merged to form a unique rule. Using this property, we proved that the
number of rules is, in worst case, polynomial of order equals to the cardinality of the
action set.

5 The Tool

The tool, written using the Java programming language for POSITIF and DESEREC
projects [12,13], is composed by an articulated class hierarchy that carry out with
the aim to be extensible, easily modifiable and comprehensible. It relies on the class
ConflictManagingRuleDatabase, allowing insertion and removal of rules us-
ing a recursive function on the cover graph (linear in the number of nodes). To manage
conflicts, the database uses: a detector, that identifies the conflicts, a resolver, classify-
ing the conflicts and providing the methods to resolve them (i.e., the rule to apply where
two rules conflict), and an exporter, able to generate the set of conflict-free rules to be
enforced by the target device.

The tool provides a graphical interface that assists the user in the policy specification,
permitting to analyze conflicting rules. It supports and manages different resolution
strategies, that solve the conflicts building an opportune semi-lattice from inserted rules.
Since all the decisions taken inside the database are done using the answers given by
the detector and the resolver, the way in which rules are arranged inside the semi-lattice
depends only on these classes. This also guarantees the possibility of interchangeability
of all the detectors and resolvers and to extend it for non-firewall scenarios. Limited
tests on a HP D7700 RG582AW showed that to insert and manage conflicts (with action-
based resolution strategy and 6 different actions) for 100 randomly generated rules (and
for this, more correlated than real world rules) the tools needs less than 2 seconds. The
average number of nodes in the graph is about 250 and after the exporter reduces the
average number of rules to 63. We planned to test our tool with concrete examples from
which we expect more interesting results.
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6 Conclusions and Future Work

In this paper we presented a set-based model of policy rules that permits the conflict
detection and a general model for resolution based on semi-lattice theory. This mathe-
matical definition is an important and innovative aspect in the field of policy analysis. In
fact, many policy-related problems are not yet addressed because of the lack of effective
mathematical models. We also presented an extensible tool providing a graphical envi-
ronment to assist the administrators towards the conflict management, also permitting
to export sets of conflict-free rules thus reducing effort and specification mistakes.

The tool is presented for filtering rules but it can be easily extended to IPsec channels
rules and web applications protected with SSL. Also the definition of new resolution
strategies is one of the most interesting research field in which we believe good results
can be achieved. and we will provide export facilities to vendor solutions. The model
requires a very limited effort to be extended to distributed firewalls (i.e., to model what
is the policy enforced by a chain of firewalls) and it can rely on the same tool by simply
including topological information that we can easily get from other results of POSITIF
project. Since the theory permits to identify sets of rules enforcing the same policy,
we already planned to test it to optimize packet filtering performances using statistical
information.
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Abstract. The paper considers the approach to filtering policy verification. We 
model potential network traffic with Event Calculus and use abductive proof 
procedure to detect firewall filtering anomalies in dynamical way. Generally, 
our approach allows separating network behavior description from security 
inconsistency definition and thus building flexible and scalable framework for 
filtering policy verification.  
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1   Introduction

One of actual problems for filtering policy management is the verification of policy 
specifications. It is a common case when the access control list (ACL) of a firewall 
contains rules which conditions are intersected. In this case, for example, a system 
administrator defines a denial rule (for large range of source and destination 
addresses, ports, protocol types) and a set of allowing rules (that give access to 
particular addresses, ports and protocol types). However other types of rule 
intersection can appear, for instance, when one rule hides another rule while the latter 
one is actually more important. Such anomalies must be opportunely detected and 
resolved, otherwise the network becomes unmanageable. It is especially important for 
large corporate networks including plenty of firewalls.  

To solve this problem, effective automated policy verification systems should be 
created and used. There are a lot of relevant works in this research area. Al-Shaer at 
al. [2] present the classification of firewall anomalies, define the relations between 
filtering rules and determine different filtering anomalies. In [1] Firewall Policy 
Advisor (FPA) software is presented; it serves for detecting the filtering anomalies 
and editing the policy. FPA covers different inter- and intra-firewall anomalies, but 
not aimed to construct network model and apply it to the security policy. Bandara at 
al. [3] use the argumentation logic reasoning and abductive proof for detection and 
resolution of firewall anomalies. Application of Event Calculus to authorization and 
obligation policies is considered in [4]. The argumentation and abduction verification 
tool is described in [6]. Our approach to verification consists in modeling the system 
behavior using the axiomatics of Event Calculus (EC) [7]. Having constructed 
domain-dependent EC axioms and formulas that express filtering anomalies, the 
abductive proof procedure [5] results in a scenario (as the sequence of events) that 
lead the firewall to ignore rules which conditions are satisfied. If the scenario is 
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found, participated rules are analyzed and one of resolution strategies is applied. In 
comparison to the approaches mentioned our security verification approach and 
software developed takes into account the descriptions of the network, security 
policies, and anomalies from different sources and thus gives more flexible and 
scalable solution. The paper is structured as follows. Section 2 considers filtering 
policy anomalies. Event Calculus-based filtering policy definition and anomaly 
detection example are represented in section 3. Section 4 describes the verification 
software architecture, user interface and experiments. Conclusion presents the paper 
results and future research directions.  

2   Filtering Policy Anomalies  

The filtering policy rule allows or denies the network traffic for given source and 
destination addresses, ports, and protocol types. Every such rule is ordered and 
corresponds to a row in the firewall access control list.  

According to [2] we use the following relations for the pairs of rules: completely 
disjoint, exact matching, inclusively matching, partially matching, correlated. 
Depending on a type of relation, the following filtering anomalies are defined:  

(1) A rule is shadowed by another rule if the latter one has higher priority, matches 
all the packets of the former one, and performs different allow/deny action;  

(2) A rule is a generalization of another rule if they have different allow/deny 
actions, the latter rule has higher priority, and the former one matches all the packets 
of the latter one;  

(3) A redundant rule performs the same action on the same packets as another rule 
such that if the redundant rule is removed, the security policy will not be affected;  

(4) Two rules are correlated if they have different filtering actions, and the first 
rule matches the packets that match the second rule and the second rule matches the 
packets that match the first rule.  

3   Event Calculus and Axiomatization  

The Event Calculus (EC) [7] formalizes the common sense principle of inertia: 
“normally, nothing changes”. It states that fluent (time-varying property of the world) 
holds at particular timepoints (real or integer numbers) if it was initiated by an event
occurrence at some earlier timepoint and was not terminated by another event 
occurrence in the meantime. Similarly, a fluent does not hold at a particular timepoint 
if it was previously terminated and was not initiated in the meantime. Fluents, events 
and timepoints are sorts of first-order language used for EC formal representation.  

Domain-dependent axiomatics is constructed in the following way. The fluent 
access is introduced for allowing or denying the network package transferring. The 
fluent parameters are protocol type, source and destination addresses and ports, 
allow/deny action, and ACL sequential number. The following expression defines that 
access fluent is not hold (until the corresponding packet reaches firewall): 

initially_false(F) :- F = access(Protocol, s_ip(X1, X2, X3, X4), P1, 
d_ip(Y1, Y2, Y3, Y4), P2, Action, Rule).
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The access fluent is initiated by request_access() event, which has analogous 
parameters.  

Let us consider an example (see Table 1) [2].  

Table 1. Example of ACL with filtering anomalies

order protocol source IP source port destination IP destination port action 
1 tcp 140.192.37.20 any *.*.*.* 80 deny 
2 tcp 140.192.37.* any *.*.*.* 80 accept 
3 tcp *.*.*.* any 161.120.33.40 80 accept 
4 tcp 140.192.37.* any 161.120.33.40 80 deny 

The first rule is translated to domain-dependent EC axiomatic as: 

initiates(E,F,T) :- E = request_access(tcp, s_ip(140, 192, 37, 20), 
P1, d_ip(Y1, Y2, Y3, Y4), 80, 1), F = access(tcp, s_ip(140, 192, 37, 
20), P1, d_ip(Y1, Y2, Y3, Y4), 80, deny, 1). 

The left rules of access control list are translated in the same way. After axiomatics 
generation, the verification procedure runs CIFF request: 

?- run_ciff([policies], [holds_at(access(Protocol, s_ip(X1,Y1,Z1,W1), 
Port1, d_ip(X2,Y2,Z2,W2), Port2, Action1, Rule1), T), 
holds_at(access(Protocol, s_ip(X1,Y1,Z1,W1), Port1, 
d_ip(X2,Y2,Z2,W2), Port2, Action2, Rule2), T), Rule1 #< Rule2], A), 

where policies is a file with domain-dependent axiomatics, two access fluents 
express simultaneous satisfability of rules conditions, constraint Rule1<Rule2 makes 
the same sequential order as in access control list, A is a CIFF answer containing 
abducible predicates and their relations. 

CIFF output contains substitutions for all variables corresponding to the 
intersection of conditions of first and second rules from Table 1. There are the 
following substitutions: 

Rule1=1, Rule2=2, Protocol=tcp, Port1=_77366, X1=140, Y1=192, Z1=37,
W1=20, Port2=80, X2=_77316, Y2=_77326, Z2=_77336, W2=_77346,
Action1=deny, Action2=permit, T=_68723,

and also the substitution for the variable A which represents CIFF answer. It consists 
of two parts. The first one is ground happens predicates: 

happens(request_access(tcp,s_ip(140,192,37,20),_77366,d_ip(_77316,_77
326,_77336,_77346),80,0),_59492),
happens(request_access(tcp,s_ip(140,192,37,20),_77366,d_ip(_77316,_77
326,_77336,_77346),80,1),_68699),

and the second one is (in)equalities in prefix form: 

<(_68699,_68723), <(_59492,_68723), =(_59492,0),=(_68699,0).

This CIFF answer can be reduced by removing one of happens predicates, since 
they have the same argument values and, as it can be seen from inequalities, happen at 
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the same timepoint 0. Thus, a scenario which detects an anomaly consists in TCP 
packet receiving with source IP 140.192.37.20, any source port, any destination 
address and destination port 80. 

The anomaly of rules with the same action is a redundancy anomaly. In other cases 
the type of anomaly is detected by predicate filter_type/4. This predicate detects 
anomalies of shadowing, generalization, correlation, and a particular case of 
shadowing and generalization where rules conditions are equal. First two parameters 
are lists with protocols, addresses and ports. The third argument contains type of 
anomaly, the fourth one detects an intersection between rules conditions. 

For empty lists as 1, 2 and 4th arguments, all types of anomalies are deducible: 
Here is an example for generalization: 

filter_type([x|T1],[x|T2],generalization,[x|T]) :- 
filter_type(T1,T2,generalization,T).
filter_type([H1|T1],[H1|T2],generalization,[H1|T]) :- 
filter_type(T1,T2,generalization,T).
filter_type([H1|T1],[x|T2],generalization,[H1|T]) :- 
filter_type(T1,T2,generalization,T).
filter_type([x|T1],[H2|T2],correlation,[H2|T]) :- 
filter_type(T1,T2,generalization,T).

The constant x corresponds to * for address and “any” for port in table 1. The first 
three rules in above code deduce generalization for extended lists, when one of two 
conditions are met: (1) if generalization for shorter lists is already deduced and the 
same head elements are added, (2) if * is added to the first list.  

If * is added to the second list, then correlation anomaly is deduced. 
Here is an example for the anomaly between the first and the second lines of 

table 1: 

?-filter_type([tcp,140,192,37,20,x,x,x,x,x,80],
[tcp,140,192,37, x,x,x,x,x,x,80], A,L). 

The anomaly type and intersection is detected as: 

A=generalization, L=[tcp,140,192,37,20,x,x,x,x,x,80]. 

4   Software Prototype  

Filtering policy verification is a part of functionality of SEcurity Checker software 
(SEC). Having taken system description in System Description Language (SDL) and 
policy definition in Security Policy Language (SPL), “Transforming and Interpreting” 
component translates them to domain-dependent EC axiomatics (Figure 1). Then 
anomalies are formulated as CIFF queries, which result in a list of detected anomalies, 
if any. After that, SEC defines appropriate resolution strategy and applies it.  

EC based module can be loaded and used along with other verification modules 
(Figure 2). Each verification modules generate logs that contain information about 
verification process and results. For each anomaly, the verification result form 
depicts: verification module name, inconsistency type, conflicting rules, possibility of 
inconsistency resolution and resolution strategies, if any is available.  

Figure 3 presents the form on which anomaly details can be viewed. 
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Fig. 1. Generalized representation of Event Calculus module  

Fig. 2. Main form and verification result form  

Fig. 3. Filtering anomaly details 

One can select any anomaly and see the intersection of involved rules conditions. 
Allowing rules are marked with green color while denying rules are marked with red 
one.  

Several experiments were conducted to analyze efficiency of EC and abductive 
search implementation of filtering policy verification. We compared such verification 
with exhaustive search for every pair of rules using pure Prolog.  



Event Calculus Based Checking of Filtering Policies 253 

5   Conclusions

In the paper we have described Event Calculus axiomatization and abductive search 
for inter-firewall anomalies. The main idea of development is to build the adequate 
network model including the network and policy description, and the network 
behavior model. Then policy anomalies definitions are added and the model is 
checked against possible anomalies. The verification module described was 
implemented in Java and uses the software library CIFF working on the base of 
SICStus Prolog. Experiments fulfilled have showed that our approach is gainful for 
real ACL examples, where the most of allowing rules are disjoint and considered as 
exceptions from general denial rules. Future work is to build uniform framework for 
verification of other policy categories, such as access control, authentication, 
confidentiality, etc., and to consider inter-categories policy conflicts.  
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Abstract. This paper addresses to the technique of security evaluation based on 
security attributes analysis in discretionary access control. A multi-level 
framework is built to calculate a set of effective user's permissions 
automatically. Information about the effective access rights is necessary during 
security verification procedure. In this paper we also propose a schema of 
Security Evaluation System. 
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1   Introduction 

Information security involves protecting systems against unauthorized loss of 
confidentiality of data and network communications; integrity of data, systems, and 
networks; and availability of services and data. Securing operating systems and 
networks is not easy. Evaluating trade-offs between functionality and security is a 
difficult task, but data security is too important to neglect. To get assurance in an 
adequate security, users can rely on the word of the manufacturer; test the system 
themselves; or rely on an impartial assessment by an independent body.  

Inadequate default security settings provided by the manufacturer cause many 
security weaknesses. One of the examples is incorrect default security configuration 
of MS Internet Explorer described in [1]. To test the system themselves and thus raise 
its security level, administrator ought to look for the Security Guides (e.g. [2]), that 
provide a detailed guidance on enhancing security configuration to address threats 
identified in user's environment. To maintain the system and permanently monitor its 
security settings, they have to be the security experts.  

Security evaluation is thus the only alternative to taking a security system on trust. 
At last decades a number of individual countries developed the security evaluation 
standards (e.g. [3]). To get a higher assurance (e.g., levels over EAL5 in CC), 
developers should specify a security model and verify its safety property using formal
approach. For high assurance systems, the difficulties of using formal methods add 
further complexity to both development and evaluation procedures. In this paper we 
discuss our approach that represents a suitable compromise for evaluation. Our 
technique is based on calculus of a set of effective access permissions (SEAP). The 
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SEAP represents the user's real access capabilities in the operating system. 
Knowledge of available rights is the most valuable information for evaluation, 
because it makes us ensured that the given security configuration does not break data 
protection. The SEAP calculation is based on the characteristics of modern security 
subsystems where access control is built on the security attributes of subjects (e.g., 
users and groups) and objects (e.g., files and folders). We have structured the security 
attributes in the form of a multi-level framework of security attributes. The rest paper 
is organized as follows. In Section 2 we observe the related works. In Section 3 the 
security mechanisms used in the contemporary operating systems are analyzed. In 
Section 4 we introduce a multi-level framework of security attributes that allows us to 
calculate the set of effective permissions. Finally, section 5 concludes the paper. 

2   The Related Works 

A great many of works on computer systems security are related to security 
evaluation. Firstly, there are the security standards. They declare the target and 
purposes of evaluation, but unfortunately they do not regulate any approaches, 
techniques, or means of the evaluation.  

Secondly, there are the theoretical methods based on theoretical security modeling, 
specification and resolving. For example, [4] is based on the formal logic for security 
model specification and conflicts searching in RBAC. The graphical approach for 
evaluation is proposed in [5], where security policy consists of domain (the system 
abstraction) and the requirements (authorization rules). A formal authorization policy 
model is proposed in [6], where a model establishes a connection of applying 
authorization policies on an administration domain with dissecting the domain into 
the authorized, denied, and undefined divisions. All mentioned approaches are 
suggested to support security engineering to evaluate the authorization rules and 
remove conflicts in the policies before they are integrated with other system 
functionalities. The user-oriented evaluation is targeted at the already assembled 
system, and it must guarantee the customer that she obtains a secure configuration.  

The third group of works is designed for security evaluation of concrete systems: 
e.g., a MulVAL tool for net security analysis [7], a Prolog-based approach for 
Windows XP bugs scanning [8]. These techniques could reason about 'privileges 
escalation' and 'misconfigurations', but they scan the given set of the system 
parameters and they can not discover real access permissions available for the user. 
We need a smart approach that will take into consideration a mutual influence of 
security parameters. There are also the software vulnerabilities detectors (e.g., 
Enterprise Security Manager of Symantec; NetIQ Security Analyzer; Microsoft 
Baseline Security Analyzer). These scanners analyze a reduced set of the system user-
level objects and they can not disclose the factor that leads to the access granted. 
Therefore, to our knowledge, the general problem of developing a practically useful 
approach for security evaluation in common operating systems has never been 
addressed. 
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3   A Security Fundament in Modern Operating Systems 

Today, every type of the operating system supports a huge number of system 
resources that accessible through drivers, services, applications, and network 
communications. For software security has emerged as a foremost concern for 
modern information enterprise, each named object of any type is protected with 
access control mechanism. A traditional schema of access control is based on security 
attributes, the set of unique characteristics of every system entity. The security 
attributes identify the protected entity for the secure system. This approach as named 
as the attribute-based access control. For example, in MS Windows (as well as in 
other types of the systems), users and groups form the subjects. The objects (e.g. files, 
services, regkeys) represent data resources. Authorization decision is made based on 
subjects and objects attributes. The security attributes are access control lists (ACLs), 
owners, groups, inheritance flags, security options of application.  

A particular mechanism for enforcing security in the computer system is called as 
security model. DAC security model [9] has a drawback that it does not provide a real 
assurance on the flow of information in a system. It is easy to bypass the access 
restrictions stated through the authorizations. For example, a user who is able to read 
data can pass it to other users not authorized to read it without the cognizance of 
usage of information by a user once the user got it. MAC model [10] governs access 
on the basis of classification. Verification of the safety of any kind of MAC policy is 
obvious as mathematical proof, but it becomes necessary in particular cases of real-
world realizations. With RBAC [11] access decisions are based on the roles that 
individual users have as part of an organization. The process of defining roles should 
be based on a thorough analysis of how an organization operates and should include 
input from a wide spectrum of users in an organization.  

MAC and RBAC policies are not particularly well suited to the leading world-
known solutions. A great majority of the operating systems uses DAC-based security 
models as the basis of an access control (see Tab 1.).  

Table 1. Security Models Types in the Modern Operating Systems

UNIX-like Systems Windows 2000/XP/2003 Windows Vista 
DAC Built-in (access bits) Built-in (access control lists) Built-in (access control lists) 

MAC Add-in (core patches) No Built-in (integrity control) 

RBAC Add-in (core patches) No No 

As the operating systems grow from the attribute  security, the security attributes 
participate in the DAC-based security implemented in the system reference monitor. 
For instance, Microsoft Windows, Linux and other protected systems use DAC 
realizations in form of ACLs, access bits, messages control, etc. Configuring the 
security attributes one must be ensured in real security. Because of amount of security 
attributes involved in to access control, evaluator would never say whether access is 
granted or not. Such degree of system complexity forces us to design a new approach 
to reduce a set of processed attributes to the set of effective (real) access permissions.
Determining the set of effective access permissions and finding the mismatches 
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between expected and given access rights can be calculated and give a verdict of the 
system security for the definite system and for its definite state. In this paper, we use 
this statement to discover incorrectly granted or missed rights and, in such way, to 
evaluate the system security of the DAC-based systems.  

4   Calculation of the Effective Permissions 

To solve the problem of security evaluation in case of attribute-based access control 
in MS Windows which realizes the DAC security model, we have built a multi-level 
framework of security attributes. Fig. 1 demonstrates a part of our framework (levels 
dedicated to Active Directory are canceled). On this schema there are 12 levels (each 
level is labeled by factor that influences on the access control work):  
• lower levels (1…3): analysis levels — we divide the security attribute 'ACL' to the 

set of 'access control entries' (ACE) attributes, and then 'ACEs' to access rights.
• upper levels (4…12): synthesis levels — we calculate a set of effective access 

permissions (SEAP), i.e. the access permissions really available for subjects at the 
given level of the framework. Each upper level is based on the lower one.  

Fig. 1. The Multi-Level Framework of Security Attributes (for MS Windows) 

The rights of the level are calculated as projection of security attribute (we depict 
this attribute the security factor) value to subject's access bits. Each attribute can be 
reduced to the subject's permissions or prohibitions. For example, the SEAP on the 
ownership level equals to Full Control available for the object. The SEAP on the 
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membership level equals to the user's rights plus rights, provided by the user's group 
rights. In the same matter, we can bring any security factor from any level to the 
access permissions. In other words, we calculate an effective set of rights by taking 
into account the security factor of the corresponding level. 

Therefore, in common case, SEAPi = f(SEAPi-1, Ui), where 2≤i≤N, N is the number 
of levels in the framework, Ui denotes the unique security attribute on the given level 
i of the framework. Function f is the attribute projection function. It calculates the 
effective permissions with taking into account the level attribute. f is thus defined for 
every level separately. In the most common case, this is a logical AND or logical 
XOR. For example, for level 5 of the framework ACEs order is the security factor, 
and the SEAP5 is calculated in the following way (subject is a user or a group): 

SEAP5(subject) = SEAP4
+(subject) XOR SEAP4

−(subject),

where SEAP4
+ is the SEAP4 calculated for the subject's permissions, SEAP4

−— for its 
prohibitions; 

SEAP4(subject) = SEAP3(subject) AND
SEAP3({groupsj}| ∀i groupsj ⊃ subject); …………….; SEAP1(subject) = {bitsk},

where {bitsk} is the set of access bits which set in the ACEk existing in the system for 
subject in the object's ACL. This procedure can calculate a set of the SEAPs for each 
subject, object on each level of the framework.  

To evaluate the system security, we need to specify security criteria that would 
delimit secure and insecure configurations. According to tradition, we look at the 
security of the operating system configuration through the security of the states [9], 
[10]. We consider the security configuration of the state as a set of subjects, objects, 
and their security attributes. Since, as mentioned above, every security attribute can 
be reduced to SEAP depending on the framework level, the state can contain extra or 
missed access permissions hidden in the subjects and objects existence, or in the sets 
of the attributes. If we add a term of constraint, the set of access restrictions given for 
the 'subject-object-SEAP' triple, to this schema, then we will detect the access 
permissions or prohibitions available or not available to the subject at the given level 
of framework in the given system. And the system in the given state will be secure if 
nothing breaks the security conditions settled by the constraint. If the system is 
insecure in correspondence to the given constraint, we can calculate the level of the 
multi-level framework and extract from it the factor that brings the permissions not 
desired in that configuration. It is possible, because one level of the framework 
projects corresponds to a single attribute. 

In theory of security (e.g. in specification of MAC, DAC, and RBAC) security 
proof is based on a predicate that checks whether the access right available for the 
given subject. In real-world systems security verification has to be done on every 
level of the attributes hierarchy. Besides this, security must be proved for the set of 
the sets of the attributes (the power of security attributes). Our approach puts the 
structure on the set of attributes and inducts the security calculus from multiple 
attributes to effective rights.  
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5   Conclusion 

In this paper, we addressed to security evaluation problem that is very actual today. 
We have reviewed the attributed nature of traditional access control released in 
Windows. These allowed us to discuss about the multi-level framework of security 
attributes. The variety of attributes can be structured in the form of pyramid, because 
one factor of influence is added on the newer security level. Each attribute brings 
additive permissions to the user. Projection of the security attribute to the access 
rights can be calculated programmatically. It allows us to build an automated security 
evaluation software that uses the multi-level framework (Fig. 2). Such evaluation 
system is the target of our future works. 

Fig. 2. The Schema of Security Evaluation System 
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Abstract. Ever increasing use of heterogeneous networks including mobile 
devices and ad-hoc sensor networks signifies the role of such information 
systems’ properties as openness, autonomy, cooperation, coordination, etc. 
Agent-based service-oriented Peer-to-Peer (P2P) architecture provides 
attractive (if not unique) design and implementation paradigm for such systems. 
This trend implies coherent evolution of security systems, that put in use the 
notions of distributed security policy, distributed intrusion detection systems, 
etc.1, requiring novel ideas. The paper proposes new architecture for such 
security systems. This architecture provides cooperative performance of 
distributed security means (agents) supported by distributed meta-knowledge 
base implemented as an overlay network of instances of P2P agent platform set 
up on top of P2P networking provider. The paper also analyzes new issues of 
P2P security systems with the main emphasis on P2P training of security agents 
to correlation of alerts produced by other relevant agents. An artificially built 
case study is used to highlight the essence of P2P security agent training to P2P 
decision combining and to exhibit new problems. 

1   Introduction: Modern Information Technology Trends  

Computer network security is very dynamic area that has to permanently adapt to new 
trends in modern information technology, hardware and software changing, 
communication environment changing. The latter permanently enlarge diversity and 
smartness of threats as well as toughen the requirements to computer and information 
systems security. Let us at first analyze the aforementioned trends and existing or 
potential solutions.  

Modern computer and information systems tend to be composed of many 
heterogeneous devices: mobile devices (smart phones, PDAs, etc.), laptops, home 
appliances, desktop computers, etc. The above enlarges diversity of protocols to be 
used, and, as a consequence, enlarges the threats diversity. In such networks, 
communication channels and, therefore, devices' interfaces are becoming excessively 
manifold. E.g., a computer node may need to support TCP\IP and Bluetooth; Pocket 
PC node may need to support WiFi; Mobile phone node may need to support 
Bluetooth, etc. Ever increasing use of wireless networking is also a trend. Therefore, 

1  For open agent-based system, the notion of distributed trust should also be used: it provides a 
way to find a tradeoff between security and openness.  
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due to limited communication distance and devices’ mobility, computer network 
becomes populated with dynamic nodes’ set that necessitates wide use of Peer-to-
Peer (P2P) computing. As a result, information technologies for ad-hoc and mobile 
networking systems rapidly evolve proposing new architectures of and design 
approaches to the network-based information systems. Among them, agent-based 
notion of Web services accentuating semantic search and dynamic service 
composition and corresponding agent-based technology looks very perspective and 
well suited to applications dealing with highly distributed entities.  

An important trend is the necessity to provide modern systems with more openness
and autonomy [11]. Indeed, nodes of mobile network may join and leave the system at 
any time thus either enriching the set of available services or cutting it down. 
Therefore, each node is autonomous and the network as a whole is an open system. 
Within agent technology, coherent operation (cooperation, coordination, competition, 
etc.) of autonomous entities (agents) within open P2P system can be provided with 
shared ontology and meta–knowledge specifying agent capabilities (e.g., services they 
can provide) and methods of access to these capabilities. These components can 
support transparency of agents’ interaction that assumes that application agents may 
know little or even nothing about existence in the network of particular services and 
agents capable to provide with them. On the other hand, the agents may know nothing 
about particular implementation of P2P networking and have an impression of direct 
interaction with the network agents while requesting from or providing for other 
network agents the needed services.  

Such agent-to-agent (P2P) interaction can be achieved by using adequate FIPA 
Message Transport Service (MTS) [1]. For P2P open networks of agents, FIPA MTS 
may be realized as an overlay network set up on top of a P2P transport protocols, for 
instance, a JXTA transport, a Bluetooth OBEX or over some other P2P transport 
providers. For a centralized case, FIPA proposed a solution for Agent and Service 
discovery component called Agent platform [2], composed of Agent Management 
System (AMS) and Directory Facilitator (DF). AMS is in charge of White Pages 
(WP) service (it specifies the list of agents coupled to the platform) and the agent life 
cycle maintenance. DF provides Yellow Pages (YP). But these solutions cannot 
support P2P interaction of agents in serverless environment. One of satisfactory 
solutions was proposed in [7], and its reusable implementation was described in [8].  

The paper objective is to analyze influence of the current trends in modern 
computer information technologies on computer and information security and to 
propose new security system architecture intended to defend open agent-based 
service-oriented systems whose components semantically interact on P2P basis. This 
architecture should provide for cooperative operation of distributed security means 
through their P2P interaction in the alert correlation procedure, when an agent is 
capable to use local data and own knowledge as well as intelligence and decisions 
produced by other agents. The second objective is set to analyze some associated 
problems concerning design of P2P security system of the proposed architecture. In 
this analysis the main attention will be paid to P2P training of security agents for alert 
correlation. 
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In the rest of the paper section 2 analyzes impact of trends and evolution of modern 
information technologies on the security associated problems and potential solutions. 
Section 3 actually states the lack of the security-oriented research relevant to 
information systems composed of highly dynamic population of autonomous entities. 
Section 4 proposes new architecture of the security systems in question and 
middleware that is an overlay network of instances of P2P Agent platform providing 
for transparent P2P interaction of distributed security means implemented as agents. 
Section 5 outlines an example of multi-agent service oriented intrusion detection 
system (IDS). Section 6 discusses the P2P meta-learning of alert correlation problem. 
Conclusion summarizes the paper contribution and discusses future research.  

2   Security of P2P Agent-Based Service-Oriented Systems  

New trends and current evolution of information technologies implies coherent 
evolution of security systems, in particular, ones intended to defend P2P agent-based 
service–oriented systems. The latter introduces the notions of distributed security 
policy and distributed IDS leading to novel security system architectures. Let us 
analyze this issue. 

Fig. 1. P2P provider, P2P Agent platform, and P2P application agent overlay networks 
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Indeed, considered agent systems are intended for cooperative problem solving. 
Within P2P agent-based service–oriented applications the cooperation concerns 
distributed execution of queries often assuming service composition. Thus, each 
process of (distributed) service execution may involve several nodes and that is why 
the defended object, the process of service execution, is distributed in this case.  
Therefore traces of the same attacks, e.g., attacks using self-replicating virus as well 
as other classes of attacks, may be detected by several agents set up on the same or 
different nodes of the network. On the other hand, the traces of the same attack may 
exhibit at different levels of query requesting and executing, e.g., at network level (in 
network traffic), in operating system and other system program audit trails (host-
based level), and in various host–based application (data bases, ftp, http, etc.). It is 
assumed that aforementioned processes are monitored by particular agents (security 
policy model checking agents, intrusion detection agents, etc.). Each of them is tuned 
(trained), say, either to a node-based–model checking, or to detection of particular 
class of attacks, viruses or anomalies. Therefore it is reasonable to organize, in 
various situations, interactions of subsets of agents if one or several agents produce 
alert(s). Of course, an important challenging question is how to determine such 
subsets3.

According to the modern 
view [11] aforementioned 
agents can be thought of as 
agents providing services on 
P2P basic. That is why all these 
agents can also be set up on top 
of P2P agent platform as 
regular service providers 
accessible on P2P basis using 
distributed White and Yellow 
page services of P2P Agent 
platform.  

Corresponding architecture 
including P2P application 
agents and security components 
as well as their interaction is 
shown in Fig. 1. It consists of 

three overlay networks where P2P overlay network is set up on top of TCP/IP 
transport provider, P2P Agent platform instances overlay network is set up on top of 
P2P providers' network and, finally, application agents overlay network that also 
includes security related agents is set up on top of P2P Agent platform.  

Such architecture of security system possesses many advantages, and the most 
important ones are scalability, autonomy of distributed security system components, 
capability to monitor heterogeneous distributed processes (data sources) within P2P 
work containing heterogeneous devices, expandability, fault tolerance and some 
other. Below a case study of security system operating in accordance with the 
proposed architecture and distributed multiple alert correlations is outlined. 

3  This aspect is not so far considered here although general ideas of how it can be done based 
on P2P data mining are mentioned in the end of the paper. 

Fig. 2. Functional architecture of the developed P2P 
agent platform and P2P provider
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3   Related Works

Computer network security problem for multi-agent service–oriented P2P system is 
weakly highlighted in the literature. Existing papers mostly concern multi-agent 
architecture. AAFID [1], AHA! IDS [14], IDA [13], MAIDS [10] are well known 
examples of multi-agent IDS. There also exist a lot of papers presenting high level 
description of multi-agent IDS architecture and their prototype-level implementations. 
According to the authors' knowledge only [2] describes P2P agent-based approach 
and its implementation. Corresponding IDS is called MAPIDS (Mobile Agent based 
Peer-to-peer Intrusion Detection System). However, this system does not support 
service–oriented architecture and in many respects considers the problem in question 
in too simplified way.  

4   P2P Agent Platform and P2P Provider 

This section briefly presents functional architecture of the middleware component 
supporting transparent interaction of application agents as well as briefly outlines its 
implementation details. Its more detailed description can be found in [8]. Let us 
remind that security policy agents as well as IDS agents belong to the set of 
application agents (Fig. 1), i.e. this middleware is also used by security components of 
the defended system.  

Three-layer functional architecture of this middleware preserving basic ideas of 
NA WG6 functional architecture [6] is shown in Fig. 2. The bottom layer of the 
architecture in question corresponds to P2P service provider. This service may be 
provided not only on request of P2P agent platform but also on request of any other 
consumer needed P2P communication. In general, standard software like JXTA, WiFi 
OBEX or other P2P provider can be used to support P2P communication. In the 
implemented case, ad-hoc P2P provider developed by the authors is used. Contact list
of P2P provider contains the list of neighbor nodes (peers) of P2P provider. This list 
can be managed through a mechanism, a functionality of the latter. Its P2P 
communication component provides connection with neighbor nodes and P2P routing 
according to a protocol. In the implemented case, two typical protocols are available, 
flooding and gossip [13]. Detailed description of P2P provider is given in [8]. 

Intermediate layer corresponds to P2P Agent platform itself. It provides for a full 
decoupling of application agents layer and P2P provider. From P2P provider 
viewpoint, P2P agent platform can be thought of as a client, or consumer of its 
services. From application agents' viewpoint, this platform is considered as specific 
services provider. In particular, it provides the former for such specific services as 
agent and service discovery, agent–agent communication and agent–peer coupling. 

The above services are provided through distributed P2P search according to the 
gossip protocol. The component "Agent and service discovery" contains also White 
and Yellow pages specifying services of agents registered on this particular instance 
of agent platform and list of agents associated with particular services. White and 
Yellow pages are implemented according to FIPA specification [5] as agents 
providing for corresponding services. The specification format used for these services 
can be found in [8, 9]. Jointly White and Yellow pages play the role of an instance of 
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distributed meta–knowledge base available to other agents of the network. Exactly 
White and Yellow pages allow the semantic service search and dynamic service 
composition4 that is the main difference between SOA and its agent-based variant. 
The P2P agent platform provides also agent–agent communication service supporting 
the capability of message passing. Agent–peer coupling functionality determines 
management policies between peer and agent platform. For example, in the 
implemented version, P2P agent platform manages P2P provider's contact list through 
the special mechanism of the bottom layer mentioned above.  

At the top layer, generic agent services provided with basic capabilities of service 
discovery (matching) and negotiation are situated.  

Interaction between P2P provider and a consumer comes to interaction through 
standard interfaces supporting access of P2P provider to consumer and vise versa. In 
order to use P2P service, consumer has to register at the local peer that is a node of 
P2P network. To register consumer has to specify its own type and identifier, which 
must be unique amongst all P2P network consumers. If particular application needs 
no longer the P2P provider service it has to deregister. Also peer provides with some 
functionality to manage its own contact list via adding and deleting records, etc. 
Agent platform can suspend and resume its own presence at a peer, for instance, 
during temporal unavailability. If some applications set on concrete device need to 
use P2P transport (e.g., to send message to a P2P AP) P2P provider has to be installed 
on that device.  

Any application needed to be connected to the P2P network as peer client must 
identify peer running on the node (device) and register. Let us note that peer and P2P 
consumers are "weakly coupled" because the latter, in some scenarios, may work 
without P2P services. On the contrary, agents and P2P Agent platform are "tightly 
coupled", i.e. P2P agents cannot operate beyond the agent platform: the latter fully 
manages the agent life cycle, i.e. loads, creates, suspends, resumes and destroys it.  

White and Yellow page agents can create associations of agents set up on different 
peers which may collaborate as "neighbors" at application agent layer (within P2P
agent network) forming other structure than peers' one. In general case this structuring 
may be dynamic and results from learning algorithms intended to establish a better or 
optimal configuration of the P2P agent network in order to improve performance of 
distributed service search, e.g., via decreasing communication overhead. So far this 
functionality is not realized in the developed P2P agent platform. 

Description of the operation scenarios of the P2P agent network supported by the 
developed middleware can be found in [8].  

5   Multi-agent P2P Intrusion Detection 

Fig. 3 presents an example of P2P Intrusion Detection system (P2P IDS) whose 
architecture corresponds to the proposed in section 3. It sets up on top of instances of 
P2P agent platform that are set up on of P2P network. P2P IDS is a particular case of 
application and that is why everything described in section 1, 2 and 4 is also true for 
it. In this figure, instances of P2P Agent platform are represented by rectangles while 
the agents are represented as circles. 

4 In the existing P2P agent platform, this functionality is not implemented yet. 
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Fig. 3. Example of a network topology and set up P2P IDS 

This P2P IDS is composed of the agents of two classes, agents-detectors and agent 
monitoring the system, displaying progress of the P2P IDS performance. Every agent–
detector is trained to detect suspicious activity (virus, attack, etc.) of a particular type. 
Every agent–detector is interpreted as provider of a particular service. It can produce 
corresponding alert when detects an attack of the "own" type and provide other agents 
with corresponding information upon their requests. The agents of the P2P IDS should 

have the capability to find the 
information of such kind when 
they need it. It is done through 
service search mechanism. 
Each IDS agent, during 
installation on the corres-
ponding instance of the P2P 
agent platform, registers itself 
at White pages and registers its 
service specifications at 
Yellow pages.  

An example of the service 
description is given in Fig. 4. 

The service description consists of service name, type and properties, i.e. the set of 
notions, describing the service at more detailed level. After the service is registered at 
Yellow pages, other agents can find it using special search mechanism provided by 
P2P Agent Platform. For instance, to find all agents providing for service 

Fig. 4. Service description example 
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"Detection_of_Attack_1" (same as "Detection of attacks of class 1") the following 
search query is used: 

service-type=='p2p-ids-attack-detector' AND attack-
type.type=='Attack1'.

The life cycle of P2P IDS agent and scenario of its operation are as follows: 

1. Agent is installed on the P2P Agent platform. This can be done at any time 
independently of whether other agents are installed or not, whether they are 
operating or not. As it was mentioned above, during installation, the agent 
registers itself in White pages of P2P agent platform and registers its services in 
Yellow pages. No special advertisement of its service is needed. It is assumed 
that, at this time, agent is trained to detect particular kind of suspicious activity 
and is ready immediately to operate.  

2. Using search capabilities of P2P Agent platform instance on which it sets up, the 
installed P2P IDS agent searches for agents trained to detect the same class of 
attack. The latter agents may set up on the same or other instances of P2P agent 
platform and operate with the same of other data sources. In general case, in its 
scenario of coalition formation, the installed P2P IDS agent can form such 
coalition dynamically via search for potential "neighbors" when detects a 
suspicious activity of its "own class" and forming the best coalition on-line or 
off-line through learning based on accumulated experience.  

3. When P2P IDS agent is installed and appropriate coalition is formed it is ready to 
make decision using the results of processing of "its own data source" and also 
decisions of other agents of the coalition. For this purpose, any P2P IDS agent 
has to be trained to combine decisions produced by other agents of the coalition.  

6   P2P IDS Agent Learning of Decision Combining 

An important issue of P2P IDS system, as well as any other P2P decision making 
systems, is training of agents to combine decisions produced by other decision 
making entities on serverless basis. This problem is rather specific, multi-aspects and 
most of these aspects are challenging. A thorough analysis of this problem is the 
subject of P2P Data mining [4], and it is beyond the current paper scope. In this 
section, a particular aspect of this problem is highlighted, i.e. what P2P training and 
testing tool can look like and some previous results of experiments concerning 
serverless (without any centralized processing or using a super peer) combining of 
decision produced by P2P IDS agents. An objective of this consideration is to draw 
attention of researchers to the problem of P2P data mining within such important class 
of applications as P2P IDS. 

Each P2P IDS agent at any time either is "keeping silent" if it detects no suspicious 
activity of the "own class" or produces alert. The "colors" of alerts produced by 
different agents will be the same if they trained to detect the same class of suspicious 
activity. Therefore, output of a P2P IDS agent may be labeled as "0" in case of no 
alert or "1" otherwise.  

Let us assume that a P2P IDS agent detects alert and in order to make decision asks 
another agents of the same "colors" about their decisions within a time interval close 
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Fig. 5. Main window of the monitor agent managing 
simulation procedure 

to the current time instant, and, if possible, concerning the same connection. As a 
result, it can produce an ordered binary sequence. This sequence is usually (in 
distributed data mining scope) called "meta-data". The agent can accumulate a sample 
of meta-data and, when these data are interpreted, use it for training and testing in off-
line mode. Such training and testing samples can be collected by each P2P IDS agent 
and the latter can use them to learn decision combining.  

Somewhat simplified version of a software tool intended for implementation of the 
aforementioned scenario of P2P training of P2P IDS agents was developed. The 
simplification is that each P2P IDS agent if it produces alert collects and combines the 
decisions only produced by the agents of the same "color". This software tool was 
used for investigating the dependence of the decision combing procedure quality on 
the number of P2P IDS agents of the same "color" set up in P2P IDS (Fig. 5).  

In the experiments every P2P IDS agent preliminary trained for "local" decision 
making, computes contingency matrices corresponding to all agents of the same 
"color" based on the accumulated training meta–data samples. The set of these 
matrices is further used by IDS agents to evaluate competences of other agents whose 
decisions the former will combine. 

In the simulation–based experiments (Fig. 5), 10 P2P IDS agents detecting attack 
of the same type (having the same "color") were involved in P2P intrusion 
detection. Training and testing samples were generated artificially (both containing 
2000 records) using some probabilistic models for each of ten intrusion detection 
agents. The simulation objective was to investigate dependency of the averaged 
combined classification quality on the number of neighbors each agent comm- 
unicates with 

Simulation is performed in 
two steps. At the first step 
(decision combining training 
step) each agent randomly 
selects N neighbors whose 
decisions it will further 
combine. Then, using com-
puted contingency matrices, 
each agent assigns the weights 
to its neighbors to use them as 
neighbors' competence met-
rics. The sense of the selected 
measure is a conditional pro-
bability that particular neigh-
bor produces a correct decision 
when agent computing com-
bined decision detects an 
attack.  

Testing procedure realized 
on meta–data testing sample 
uses two decision combining 
rules, "Sum rule" and "Max
rule" [12]. Sum rule computes 
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Fig. 6. ROC curve corresponding to decision combining using "Sum rule" 

the sum of probabilities of correct decisions that may be one of two classes, "Attack"
or "Normal". Corresponding weights in favor of each of these classes are computed as 
follows:  

)k(w)k(W
)(Si iAttak +∈

= , )k(w)k(W
)(Si iNormal −∈

= ,

where )k(wi  — the weight evaluating competence of the agent i from viewpoint of 

the agent k, )k(WAttack  — the value of the "Sum rule" function voting in favor of the 

"Attack" class from the viewpoint of agent k, )k(WNormal  — the value of the "Sum 

rule" function voting in favor of the "Normal" class, )(S +  — the set of agents 

voting in favor of the "Attack" class, and )(S −  — the set of agents voting in favor 

of the "Normal" class. 
Fig. 6 presents ROC curve corresponding to decision combining using "Sum rule". 

In this curve, the x-axis corresponds to the False Positive rate while the y-axis 
corresponds to the True Positive rate. The marks in circles associated with the 
particular points of this curve indicate the number of neighbors whose decisions the 
decision combining agent takes into account. The presented ROC curve resulted from 
the averaging done over ROC curves of seven agents participating in simulation. For 
these particular simulation settings, the best P2P IDS performance corresponds to the 
case when seven neighbors are included in the agents’ contact lists.  

Analogous simulation was done using "Max rule"-based alert correlation that 
generated similar results.  

7   Conclusions and Future Work 

The main paper contribution is new architecture for open agent-based service-oriented 
IDS systems operating on P2P basis. The proposed architecture (Fig. 1) provides for 
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cooperative performance of distributed security means supported by distributed meta-
knowledge base implemented as an overlay network of instances of P2P agent 
platform set up on top of P2P networking provider, implemented in turn as overlay 
network set up on top of TCP/IP transport. Overlay network of P2P agent platform 
instances allows transparent semantic interaction of agents (including the agents of 
distributed security system) cooperating through security service exchange. The 
security system of such architecture can simply be populated with new agents, i.e. 
new security components when necessary. The resulting security system possesses 
such important properties as scalability, extendibility, efficiency and fault tolerance. 

The problems associated with the design of P2P security system of the proposed 
architecture are analyzed. In this analysis, the main attention is paid to P2P training of 
security agents intended to provide for better quality of alert correlation aimed at 
more reliable detection of suspicious activity. Simplified P2P agent training for 
decision combining and testing software tool were developed. They were used in 
simulation-based experiments basically intended to highlight the essence of the 
training of P2P IDS agents to P2P decision combining and to exhibit potential 
problems and solutions. 

Future work should concern enrichment of expressive capabilities of the distributed 
meta-knowledge base, further investigation of P2P decision combining procedures as 
well as joint operation of P2P security policy agents, P2P IDS agents and P2P agent 
platform being the core aspects of the proposed architecture.  
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Abstract. Temporal logic has the potential to become a powerful mech-
anism for both modeling and detection of attack signatures. But, al-
though recently some very expressive attack representations and on-line
monitoring tools have been proposed, such tools still suffer from a lack of
sufficiently precise detection mechanisms. In particular, they can report
only the existence of an attack instance and cannot locate precisely its
occurrence in a monitored event stream. Precise location is a key to en-
abling proper verification and identification of an attack. In this paper,
we propose a formal framework for multi-event attack signature detec-
tion, based on Interval Temporal Logic. Our framework formalizes the
problem of finding the localizations of a number types of attack signa-
ture occurrences: the first, all, k-insertion and the shortest one. In our
approach, we use the existing run-time monitoring mechanism developed
for the Eagle specification, and extend it by special rules to enable such
localization tasks. Our approach works on-line, and our initial results
demonstrate the effectiveness and efficiency of the proposed approach.

Keywords: Intrusion detection, attack signatures, interval temporal
logic, approximate pattern matching.

1 Introduction

Intrusion detection systems (IDSs) are becoming more and more necessary pro-
tection against computer and network attacks. Generally, these systems are ei-
ther anomaly-based or misuse-based [5]. As misuse-based IDS systems produce
fewer false alarms, they are more widely used in practice. Such systems can
identify known attacks using attack signatures that are special patterns used to
find suspicious events that occur in a system or a network. Since, in general,
the problem of attack signature detection has been converted into a pattern
matching problem [3], many pattern-modeling and pattern-matching techniques
have been proposed. Among patterns used we find strings, classes of characters
[6], regular expressions with back referencing applied in the GASSATA system
[8], regular expressions with variables used in the REE language [18], extended
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regular expressions and Colored Petri-Nets considered in [5] and applied in the
IDIOT system, and acyclic directed graphs used in the MuSigs specification [7]
developed for the ARMD system. However, as nowadays more and more attack
techniques involve complex, time-correlated sequences of actions, these patterns
turn out to be either insufficient or difficult to model effectively the properties
of the sophisticated multi-event attack signatures and to enable their detection.

Recently, expressive and more convenient signature representations have been
proposed, such as chronicle-based ADeLe applied in the GnG system [17] and
various temporal logic expressions used in tools such as logWeaver [16], Or-
chids [14], Monid [12] and SDIDS [2], and in signature attack models: ISITL
[15] and SigITL [13]. However, they still need improvement, particularly in the
construction of the matching algorithms to be used. Chronicle-based GnG uses a
nondeterministic automaton-based detection mechanism, which makes this ap-
proach insufficiently efficient to detect more complex signatures, especially those
which are temporally ordered.

In turn, most existing temporal logic-based IDS tools are not fine enough
to permit more complex multi-event signatures to be located precisely in event
streams. Indeed, from the point of view of a system administrator, such tools
at present work as ”black boxes”, because their output usually consists only of
a statement whether or not an attack signature has been found. This makes
the detection result insufficiently reliable to ensure that the identification of
attack traces is sound, so further investigation is required, which makes the
whole detection process much slower. This remains a major obstacle to effective
application of these techniques.

However, despite this limitation, at least two main advantages of temporal
logic-based approaches, such as the Eagle logic-based Monid, make them still
very promising. First, the Eagle logic [1] is highly expressive, since it supports a
large variety of existing logics and patterns. Second, it provides efficient real-time
monitoring. Since these features are of great importance to intrusion detection
systems, we argue that they represent good reasons to be interested in extending
the approach applied in Monid in order to tailor better its capability to handle
attack signature localization tasks. Additional motivation is also the encouraging
initial work done in this direction that can be found in [16] used in logWeaver
and recently also in Orchids. However, the authors considered formally only
one type of a signature match (the shortest match) which can be insufficient.
Moreover, this work was carried out for the case of a much less expressive logic
than Eagle, and so the logWeaver specification does not allow the modeling of
more complex temporal features of multi-event signatures.

In this paper, we extend the above results, concentrating on the general study
of the problem. Namely, we propose a formal matching framework to create an
unambiguous temporal logic-based specification for matching complex multi-
event signatures. There are two main challenges in defining such a framework.
Firstly, in the literature there is no general agreement on how much informa-
tion about potential signature matches should be reported during the detection
process. As a result, there are many different approaches to this problem such as
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reporting the first match, all matches, the k-insertion, shortest or time-limited
match (see e.g. [4,6,16,17]). Secondly, to date there appears to be no formal de-
finition of what it means to locate precisely a pattern in the form of a temporal
formula in some data sequence in a manner appropriate for various types of sig-
nature matches. Our aim is therefore to develop general and formal principles
to address this problem and explore its practical implementation.

In our approach presented in this paper, we use our own previous result, the
SigITL model [13] based on the well-studied and theoretically sound Interval
Temporal Logic (ITL) [9,10] which properties are embedded in the Eagle logic.
As we have showed in [13], the SigITL model provides a convenient and flexible
tool for considering problems of modeling of complex temporal features of multi-
event signatures. In this paper, we show that it can also support defining a
matching framework to detect such signatures.

The structure of this paper is as follows. Section 2 reviews briefly existing
approaches to attack signature match locating problems. In Section 3 we formally
specify the signature matching problem in our SigITL model. In Section 4 we
outline our matching algorithm. Section 5 describes our matching framework
with initial experimentation in Section 6. Conclusions are in Section 7.

Because of space constraints proofs are omitted from the paper.

2 Locating Matches of Attack Signatures

Pattern matching approach to attack signature detection was initially introduced
in [3] and can be viewed as an on-line multiple approximate pattern-matching
problem [6]. In this approach, a signature match is considered as an occurrence of
an attack signature to be located in some sequence of events (from system logs or
network traffic). In case of multi-event signatures, as it is quite common that an
intruder intentionally inserts some additional events or performs an attack during
a long time period to avoid detection, matching mechanism allows insertions of
irrelevant events between events that belong to a detected signature. In general,
the problem is considered as either searching a subsequence or a subsequence
with constraints (e.g. insertion distance [6] or timing constraints [4,17]). In this
context, various approaches to the signature match locating problem can be
identified in the literature:

• Existence of a match, i.e. only the fact of an occurrence of a signature match
is reported. This approach, used in e.g. GASSATA and in most of temporal
logic-based IDSs, requires manual localization of detected signatures.

• First match, i.e. only the first encountered signature match is reported. This
is the most common approach, but may result in ignoring other real matches.

• All matches, i.e. all found signature match instances are reported. This fea-
ture, supported by e.g. GnG, guarantees not missing any potential match,
but it can also need an exhaustive search, since maintaining and checking
many partial matches are required. Another disadvantage is that there may
be overlap and redundancy among the matches reported.
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• k-insertion match, i.e. a signature match is reported, where at most k inserted
events are allowed in an occurrence of a match. This kind of match was
considered in [6]. This approach mainly addresses short-term attacks.

• Shortest match, i.e. minimal-length match is reported. This kind of match
has been proposed in [16] and considered as the most significant. It is used
in logWeaver and recently also in Orchids. However, similarly to the first
match case, it may also lead to a risk of missing relevant events.

• Time-limited match, i.e. a match where the time delay between certain events
is specified. This feature is supported by e.g. IDIOT, GnG and SDIDS sys-
tems. It has a meaning in case of automated attacks (e.g. worms).

3 Matching SigITL Signatures

In this section, we formally define a multi-event signature matching problem in
our SigITL model introduced in [13] and based on a slightly modified subset of
the Interval Temporal Logic (ITL) [9].

3.1 SigITL Model

Let us fix a finite alphabet Σ. Let elements of Σ refer to all possible types of
events that can occur in system logs or in network traffic. Given an alphabet
Σ, an event sequence σ = e1e2 . . . en, where ei ∈ Σ for all 1 ≤ i ≤ n, is an
ordered sequence of events sorted with respect to their timestamps.

In order to put our consideration in a temporal logic context, we recall briefly
the definition of the SigITL (details can be found in [13]). Let P be a set of
propositions. Let each element from Σ correspond to some propositional prop-
erty. Let �, ♦,© and ; refer to temporal operators such as always, sometime, at
the next moment and chomp. For technical clarity, we should note here that the
chomp operator is used in our SigITL model instead of chop, the original ITL
operator. In fact, chomp is a slight variant of chop and expresses the conventional
concatenation [11]. Our SigITL model is formally defined below.

Syntax. SigITL formulas are defined inductively as follows:

ϕ ::= P |	 |⊥ |¬ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ |�ϕ | ♦ϕ | © ϕ |ϕ ; ϕ.

Semantics. Let σ be a finite sequence of events of length n. By σ(i) we denote
ith event of σ. The term σ[i, j] denotes the interval of a sequence σ from position
i to position j, where 1 ≤ i ≤ j ≤ n. If a SigITL formula ϕ holds in the interval
σ[i, j], we denote this by σ[i, j] � ϕ, and say that an interval σ[i, j] satisfies a
formula ϕ. Let ϕ, ψ be SigITL formulas. Given an event sequence σ, satisfaction
in SigITL is as follows:

σ[i, j] � p iff σ(i) = p, p ∈ P
σ[i, j] � 	 iff true
σ[i, j] � ⊥ iff false
σ[i, j] � ¬ϕ iff ¬(σ[i, j] � ϕ)
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σ[i, j] � ϕ ∧ ψ iff σ[i, j] � ϕ and σ[i, j] � ψ
σ[i, j] � ϕ ∨ ψ iff σ[i, j] � ϕ or σ[i, j] � ψ
σ[i, j] � �ϕ iff (∀k ∈ [i, j])(σ[k, j] � ϕ)
σ[i, j] � ♦ϕ iff (∃k ∈ [i, j])(σ[k, j] � ϕ)
σ[i, j] �©ϕ iff i < j and σ[i+ 1, j] � ϕ
σ[i, j] � ϕ ; ψ iff (∃k ∈ [i, j))(σ[i, k] � ϕ and σ[k + 1, j] � ψ).

Let ϕ ∈ SigITL represent a multi-event attack signature and σ be an event
sequence. Classically, a given temporal formula is only regarded as either satisfied
or not. So, if σ satisfies ϕ, i.e. σ[1, n] � ϕ, we know only that a match of a
signature ϕ exists in a sequence σ, and not otherwise. However, we would like
to know not only whether a certain match exists or not, but also where such
a match exactly occurs within this sequence. Therefore, in the sequel, we will
extend the problem of SigITL formula satisfaction into the problem of SigITL
formula matching.

First let us introduce some assumptions we have made. The first assumption
is a result of a simple but important observation in attack detection: if an attack
is detected, no other later event can invalidate this detection. So, in particular,
if a match of a signature ϕ exists in an interval σ[1, j], where 1 ≤ j ≤ n, then
this fact is also true on the whole sequence σ[1, n]. Therefore we consider only
SigITL formulas that are monotonic and formally define this property as follows.

Definition 1. Formula ϕ ∈ SigITL is monotonic, if

(∀i, j, k ∈ {1, 2, . . . , n})(((σ[i, j] � ϕ) ∧ ([i, j] ⊆ [i, k]))⇒ σ[i, k] � ϕ).

Moreover, we assume that each monotonic formula is in a negative normal form
(NNF). From now on, we use the term SigITL∗ to represent the SigITL model
with only monotonic formulas in NNF form.

3.2 SigITL∗ Matching Model

We introduce now our formal definition of an occurrence of SigITL∗ signature
match in an event sequence. Let ϕ ∈ SigITL∗ be a multi-event signature and
σ = e1e2 . . . en be an event sequence. If σ satisfies ϕ, i.e. σ[1, n] � ϕ, then
intuitively by an occurrence of a signature ϕ in an event sequence σ, we mean
the information about which events of ϕ are satisfied in which positions of σ.
Clearly, it is a set of events from ϕ with associated indices of σ, in which matched
events occur.

Let us introduce this problem formally. Notice that σ = e1e2 . . . en can be
viewed as a set sσ =

⋃n
i=1{(σ(i), i)}. Let L(σ) = P (

⋃n
i=1{(σ(i), i)}) be a col-

lection of all subsets of sσ. Then of course, any set L = {(ei1 , i1), (ei2 , i2), . . . ,
(eim , im)} ∈ L(σ) can be interpreted as a subsequence of σ. We say that a set
L ∈ L(σ) is an occurrence of a signature ϕ in an event sequence σ = e1e2 . . . en

if the following condition holds

(∀σ′ ∈ ∆(L))(σ′ � ϕ) ∧ (∀1 ≤ k ≤ m)(∃σ′ ∈ ∆(L \ {(eik
, ik)}))(σ′ � ϕ), (1)
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where an operator ∆ : P (Σ ×{1, 2, . . . , n})→ P ((Σ ∪.){1,2,...,n}) transforms a
set L into a set of event sequences as follows:

∆(L) = {e′1 . . . e′i1−1ei1e
′
i1+1 . . . e′im−1eime

′
im+1 . . . e′n : (∀i)(e′i ∈ {ei,.})},

where . denotes any symbol which does not belong to Σ.
Before we go any further, we need to introduce some more terminology. First,

we define the following strict orderings <lex, ≺ and <fst on L(σ). For every
L = {(ei1 , i1), . . . , (eil

, il)} ∈ L(σ) and L′ = {(ei′
1
, i′1), . . . , (ei′

l′
, i′l′)} ∈ L(σ) such

that 1 ≤ i1 < i2 < . . . < il ≤ n and 1 ≤ i′1 < i′2 < . . . < i′l′ ≤ n, we say that
L <lex L

′ if and only if (∃1 ≤ j ≤ min(l, l′))(i1 = i′1∧ . . .∧ ij−1 = ij−1∧ ij < i′j).
Similarly, following the notation from [16], we say that L ≺ L′ if and only if
([i1, il] � [i′1, i

′
l′ ]) ∨ ([i1, il] = [i′1, i

′
l′ ] ∧L <lex L

′). Besides, we say that L <fst L
′

if and only if L ≺ L′ ∨ (L ⊀ L′ ∧ L <lex L
′).

We also define an insertion distance in our SigITL∗ model. Let L = {(ei1 , i1),
(ei2 , i2), . . . , (eil

, il)} ∈ L(σ) be any occurrence such that 1 ≤ i1 < i2 < . . . <
il ≤ n, then an insertion distance we define as follows: id(L, σ) = il− i1− l+1
if L �= ∅ and ∞ otherwise.

We show now that our foregoing definition of an occurrence of SigITL∗ signa-
ture can be naturally extended for various match locating problems, namely for
all matches, the first, k-insertion and shortest match, which we formally define
below.

Definition 2. Let ϕ ∈ SigITL∗ be a signature and σ = e1e2 . . . en be an event
sequence. Then we can define the following types of signature occurrences in our
SigITL∗ matching model:

– All Matches. All occurrences of a signature ϕ, denoted by AllMatch(ϕ, σ)
⊆ L(σ), is defined as a collection of all sets L ∈ L(σ) which are occurrences
of a signature ϕ in σ, i.e. such sets L ∈ L(σ) for which condition (1) holds.

– First Match. Let j be such a natural number that σ[1, j−1] � ϕ ∧ σ[1, j] �
ϕ. Then the first occurrence of a signature ϕ we call a set L ∈ AllMatch(ϕ,
σ[1, j]) if ¬(∃L′ ∈ AllMatch(ϕ, σ[1, j]))(L′ <fst L), and we denote it as
FirstMatch(ϕ, σ) = L.

– k-Match. Let L ∈ AllMatch(ϕ, σ) be any occurrence of a signature ϕ in σ.
Let k be the maximal number of insertions that are allowed in an occurrence
L. Then an occurrence of a signature ϕ with at most k insertions is defined
as: k-Match(ϕ, σ) = {L ∈ AllMatch(ϕ, σ) : id(L, σ) ≤ k)}.

– Shortest Match. If the number of insertions that are allowed in an occur-
rence of a signature ϕ has to be minimal, it is defined as: ShortestMatch
(ϕ, σ) = {L ∈ AllMatch(ϕ, σ) : ¬(∃L′ ∈ AllMatch(ϕ, σ))(L′ ≺ L)}.

The following example illustrates how various types of multi-event signature
occurrences are identified in our SigITL∗ matching model.

Example 1. Let us consider an attack scenario in which an attacker exploits an
old sendmail bug in Unix and gains the root privilege. This scenario consists of
the following steps:
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A cp /bin/sh /usr/spool/mail/root
B chmod 4755 /usr/spool/mail/root
C touch x
D mail root < x

There can be, however, a few variants of the above attack scenario (see [13] for
details). Here, for illustration, we consider its partially ordered SigITL∗ signa-
ture: ϕ = (♦(A ; B)∧♦C) ; D. It specifies that cp must precede chmod, chmodmust
precede mail, and touch must occur before mail. Let σ = AABACBD. Then we
get AllMatch(ϕ, σ) = {L1, L2, L3, L4, L5}, where L1 = {(A, 1), (B, 3), (C, 5),
(D, 7)}, L2 = {(A, 1), (C, 5), (B, 6), (D, 7)}, L3 = {(A, 2), (B, 3), (C, 5), (D, 7)},
L4 = {(A, 2), (C, 5), (B, 6), (D, 7)} and L5 = {(A, 4), (C, 5), (B, 6), (D, 7)}. As
we have (∀i ∈ {2, 3, 4, 5})(L1 <fst Li), so FirstMatch(ϕ, σ) = L1. Let k = 2.
Since id(L1, σ) = id(L2, σ) = 3, id(L3, σ) = id(L4, σ) = 2, id(L5, σ) = 0, so
we get 2-Match(ϕ, σ) = {L3, L4, L5}. Because (∀i ∈ {1, 2, 3, 4})(L5 ≺ Li), so
ShortestMatch(ϕ, σ) = {L5}.

4 Algorithm SigITL∗-Match

In this section, we introduce our matching mechanism that handles the local-
ization problem of various types of multi-event signature occurrences defined in
SigITL∗ matching model, proposed in the previous section. Our computation
approach is based on the rewriting system proposed for monitoring Eagle logic
formulas. But although, some of our basic rules are similar to the rules proposed
by Barringer et al. for the Eagle logic [1], we largely extend them to provide the
precise mechanism which not only detects the existence of signature matches,
but also precisely locates detected signatures in an event sequence.

4.1 Basic Notation

Before presenting our algorithm in detail, let us introduce some more termi-
nology. Let Σ = {α1, α2, . . . , α|Σ|}. At first we need to extend the existing
set P of variables. Therefore, we define an auxiliary set of special variables Φ
which represents all possible appearances of events in the event sequence σ as
follows: Φ =

⋃n
i=1{liα : α ∈ Σ} ∪ {l0}. We say that a variable liα ∈ Φ rep-

resents an appearance of an event α in the event sequence σ at a position i,
i.e. α = σ(i). Besides, we define a function ξ : Σ × {1, 2, . . . , n} → Φ as fol-
lows: (∀α ∈ Σ)(∀1 ≤ i ≤ n)(ξ(α, i) = liα). We would like to extend the de-
finition of ξ for all subsets of Σ × {1, 2, . . . , n}. We proceed as follows. Let
L = {(e1, i1), (e2, i2), . . . , (em, im)} ∈ P (Σ × {1, 2, . . . , n}). Then, we have

ξ(L) = {ξ(e1, i1), ξ(e2, i2), . . . , ξ(em, im)} = {li1e1
, li2e2

, . . . , lim
em
}.

Notice that the extended function ξ is bijective. We also introduce partial and
linear orders on the set Φ of variables. We define a strict partial order ≺ as
follows: (∀e1, e2 ∈ Σ)(∀x, y ∈ {1, 2, . . . , j})(lxe1

≺ lye2
≡ e1 = e2 ∧ x < y) and a

linear order � as follows: (∀e1, e2 ∈ Σ)(∀x, y ∈ {1, 2, . . . , j})(lxe1
� lye2

≡ x ≤ y).
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match〈�, e〉 → �
match〈⊥, e〉 → ⊥
match〈l, e〉 → l, if l ∈ Φ

match〈p, e〉 →
�

lip ∈ Φ, if p = e ∧ p /∈ Φ
⊥, if p �= e ∧ p /∈ Φ

match〈¬ϕ, e〉 → ¬match〈ϕ, e〉
match〈ϕ ∧ ψ, e〉 → match〈ϕ, e〉 ∧ match〈ψ, e〉
match〈ϕ ∨ ψ, e〉 → match〈ϕ, e〉 ∨ match〈ψ, e〉
match〈©ϕ, e〉 → ϕ
match〈♦ϕ, e〉 → match〈ϕ, e〉 ∨ match〈©♦ϕ, e〉
match〈�ϕ, e〉 → match〈ϕ, e〉 ∧ match〈©�ϕ, e〉
match〈ϕ ; ψ, e〉 → if value〈ϕ〉 = true then

let η = conj(extract〈remove〈ϕ〉〉) in
(match〈ϕ, e〉 ; ψ) ∨ (η ∧ match〈ψ, e〉)

else (match〈ϕ, e〉 ; ψ).

Fig. 1. Match rules

value〈�〉 = true value〈ϕ ∧ ψ〉 = value〈ϕ〉 andvalue〈ψ〉
value〈⊥〉 = false value〈ϕ ∨ ψ〉 = value〈ϕ〉 orvalue〈ψ〉
value〈l〉 = true, if l ∈ Φ value〈©ϕ〉 = false
value〈p〉 = false, if p /∈ Φ value〈♦ϕ〉 = false
value〈¬ϕ〉 = ¬value〈ϕ〉 value〈�ϕ〉 = true

value〈ϕ ; ψ〉 = value〈ϕ〉 andvalue〈ψ〉.

Fig. 2. Value function

4.2 Matching Mechanism

We are ready to present our matching algorithm. Our algorithm, called SigITL∗-
Match, works as follows. At first a signature ϕ, which is represented as SigITL∗

formula, is rewritten by match rewrite rules into another formula ϕ′ (see Fig. 1).
Our match rules refer to the eval function from Eagle. They, however, work
according to the semantics of SigITL∗ and in our matching approach, we re-
placed the rule of evaluation of variables with two our new rules: match〈l, e〉
and match〈p, e〉 to enable remembering events from a signature ϕ that have been
matched. For the same reason we have modified a rule match〈ϕ ; ψ, e〉, because
at each time if the value〈ϕ〉 = true, we also need to remember matched events
of ϕ. The conj function, used in this rule, creates a conjunction of variables of
Φ from a set of event appearances. For example, for a set {li1e1

, li2e2
, . . . , lim

em
}, we

obtain a formula li1e1
∧ li2e2

∧ . . .∧ lim
em

. Formally, the evaluation of a formula ϕ on
an event e = σ(i) of an event sequence σ results in another formula match〈ϕ, e〉
with the property that σ[i, n] � ϕ if and only if σ[i+ 1, n] � match〈ϕ, e〉. This
property is formalized in the following theorem.

Theorem 1. Let ϕ ∈ SigITL∗ be a signature and σ = e1e2 . . . en be an event
sequence. Then by applying the rules match on the formula ϕ and an event
ei = σ(i), for i ∈ {1, 2, . . . , n}, we obtain a formula ϕ′ = match〈ϕ, ei〉 such that
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σ[i, n] � ϕ⇔ σ[i+ 1, n] � ϕ′. (2)

After applying match rules, we apply value function (see Fig. 2). Our func-
tion value is a modified version of the value function from Eagle. Similarly,
like in case of match rules, we introduced value〈l〉 and value〈p〉. The value
function, when applied on ϕ, at the end of an event sequence σ, returns true if
and only if signature ϕ occurs in σ and false otherwise. Thus, given an event
sequence σ = e1e2 . . . en, a signature ϕ is said to be satisfied by σ if and only if
value〈match〈. . .match〈match〈ϕ, e1〉, e2〉 . . . , en〉〉 is true.

Corollary 1. Condition (2) can be generalized as follows:

σ[1, n] � ϕ⇔ value〈match〈. . .match〈match〈ϕ, e1〉, e2〉 . . . , en〉〉 = true.

At this stage, we introduce a set of new rules and a procedure to enable precise
localisation of an occurrence of a signature ϕ in case a formula ϕ holds along
a sequence σ (i.e. a signature match exists). Our basic idea for this task is to
keep the information of a potential signature occurrence within the transformed
formula. For this task we introduce remove rules and a function extract (see
Fig. 3 and 4) which allow us to extract occurrences of a signature directly from
the transformed formula. Notice that basically, remove rules are similar to the
function value and are also used at the end of an event sequence σ (just after
applying value function). However, their role is different. The task of remove
rule is to remove temporal operators from a formula. This operation gives us a
state formula that has only propositional operators ∧, ∨, ¬ and variables from
the set Φ. Afterwards, on such a state formula, we apply an extract function
to get a set of variables which indeed represents an occurrence of a signature ϕ.
We can formalize it by the following theorem.

Theorem 2. Let ϕ ∈ SigITL∗ be a signature and σ = e1e2 . . . en be an event
sequence. Then

E = extract〈remove〈match〈. . .match〈match〈ϕ, e1〉, e2〉 . . . , en〉〉〉

and ξ−1(E) ∈ L(σ) is an occurrence of ϕ in σ.

5 SigITL∗ Matching Framework

In this section, we describe how various types of signature occurrences defined
in our SigITL∗ model in Section 3 are identified by our matching algorithm
presented in previous section.

5.1 All Matches

We start by introducing a procedure which allows us to find all occurrences of
a signature ϕ in an event sequence σ, i.e. to find a set AllMatch(ϕ, σ). We
proceed as follows. Let ϕi be a signature ϕ after i steps of evaluation, i.e. ϕi =
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remove〈�〉 → � remove〈ϕ ∧ ψ〉 → remove〈ϕ〉 ∧ remove〈ψ〉
remove〈⊥〉 → ⊥ remove〈ϕ ∨ ψ〉 → remove〈ϕ〉 ∨ remove〈ψ〉
remove〈l〉 → l, if l ∈ Φ remove〈©ϕ〉 → ⊥
remove〈p〉 → ⊥, if p /∈ Φ remove〈♦ϕ〉 → ⊥
remove〈¬ϕ〉 → ¬remove〈ϕ〉 remove〈�ϕ〉 → �

remove〈ϕ ; ψ〉 → remove〈ϕ〉 ∧ remove〈ψ〉.

Fig. 3. Remove rules

extract〈�〉 = {l0} extract〈ϕ ∧ ψ〉 = merge1(extract〈ϕ〉, extract〈ψ〉)
extract〈⊥〉 = ∅ extract〈ϕ ∨ ψ〉 = merge2(extract〈ϕ〉, extract〈ψ〉)
extract〈lie〉 = {lie} extract〈¬lie〉 = ∅.

merge1(M1, M2) =
1. if M1 = ∅ or M2 = ∅ then return ∅
2. M := M1 ∪ M2
3. while (∃l, l′ ∈ M)(l ≺ l′)
4. M := M \ l′

5. return M

merge2(M1, M2) =
1. if M1 = ∅ and M2 = ∅ then return ∅
2. if M1 = ∅ then return M2
3. if M2 = ∅ then return M1
4. if (∀l ∈ M1)(∃l′ ∈ M2)(l � l′) then return M1
5. else return M2

Fig. 4. Extract function

match〈. . .match〈match〈ϕ, e1〉, e2〉 . . . , ei〉. At each step i, if in the formula
ϕi there is some variable p ∈ P that has matched an event ei (here a function
check is applied), then we additionally create a new instance ϕ′

i and evaluate the
formula ϕ on an event ., i.e. ϕ′

i = match〈. . .match〈match〈ϕ, e1〉, e2〉 . . . ,.〉.
To find out if some event has been matched, we use a new introduced function
check (see Fig. 5). The function check〈ϕ, e〉 returns true if some variable in a
formula ϕ has matched an event e and false otherwise.

Let ϕ ∈ SigITL∗ be a signature and σ = e1e2 . . . en be an event sequence.
We define formally the above described procedure as follows:

Ψ1 = {ϕ},

Ψi+1 = {match〈ψ, ei〉 : ψ ∈ Ψi} ∪ {match〈ψ, �〉 : ψ ∈ Ψi ∧ check〈ψ, ei〉 = true}.

Then, we define a set AllMatch∗ as follows:

AllMatch∗(ϕ, σ) = {extract〈remove〈ψ〉〉 : ψ ∈ Ψn}.

Corollary 2. Let ϕ ∈ SigITL∗ be a signature and σ = e1e2 . . . en be an event
sequence. Then AllMatch(ϕ, σ) = AllMatch∗(ϕ, σ).

5.2 First Match, k-Match and Shortest Match

Notice that the set Ψi can grow exponentially. Since reporting all occurrences of
a given signature can become computationally expensive, therefore, in practice
we usually do not want to find the set AllMatch(ϕ, σ), but we could prefer
to reduce the problem to finding the first occurrence or occurrences that satisfy
some constraints.
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check〈�, e〉 = false check〈⊥, e〉 = false
check〈l, e〉 = false, if l ∈ Φ check〈¬l, e〉 = false, if l ∈ Φ
check〈p, e〉 = true, if p = e and p /∈ Φ check〈©ϕ, ei〉 = false
check〈¬p, e〉 = false, if p = e and p /∈ Φ check〈♦ϕ, e〉 = false
check〈ϕ ∧ ψ, e〉 = check〈ϕ, e〉 or check〈ψ, e〉 check〈�ϕ, e〉 = false
check〈ϕ ∨ ψ, e〉 = check〈ϕ, e〉 or check〈ψ, e〉 check〈ϕ ; ψ, e〉 = check〈ϕ, e〉 .

Fig. 5. Check function

Finding the first occurrence using our algorithm is very easy. We need to find
FirstMatch(ϕ, σ)=ξ−1(extract〈remove〈match〈. . .match〈ϕ, e1〉 . . . , ej〉〉〉),
where 1 ≤ j ≤ n such that value〈match〈. . .match〈ϕ, e1〉 . . . , ej−1〉〉 = false
and value〈match〈. . .match〈ϕ, e1〉 . . . , ej〉〉 = true. This can be done straight-
forwardly by applying our rules.

However, in case of some attack scenarios, finding only the first occurrence
could be insufficient and we would prefer to find all occurrences that have events
appropriately close to each other. Therefore, we can restrict the problem to
finding occurrences from either set k-Match(ϕ, σ) or ShortestMatch(ϕ, σ).
To find the former set, we proceed similarly like in case of finding the set All-
Match(ϕ, σ), with the exception that now, at each step i, we delete all formulas
ψ ∈ Ψi for which the corresponding (possibly partially) occurrence set Lψ ∈ L(σ)
has an insertion distance larger then k, i.e. Ψi := Ψi \ {ψ ∈ Ψi : id(Lψ, σ[1, i]) >
k}. In practice, this can be done very efficiently during the evaluation. At each
step of evaluation we can also move formulas ψ ∈ Ψi for which value〈ψ〉 = true
to set Ψ ′. It means that we can stop evaluating formulas if they are satisfied. We
can do this since we assume that formulas are monotonic.

To find the set ShortestMatch(ϕ, σ) we proceed as follows: at each step i
we delete all formulas ψ ∈ Ψi for which there exists another formula ψ′ such that
their corresponding (possibly partial) occurrence sets Lψ, Lψ′ ∈ L(σ) satisfied
Lψ′ ≺ Lψ, i.e. Ψi := Ψi \ {ψ ∈ Ψi : (∃ψ′ ∈ Ψ)(Lψ′ ≺ Lψ)}.

6 Simulation Experiments

To verify our formal conceptual matching framework, we have implemented our
algorithm SigITL∗-Match in OCAML functional language and tested it exper-
imentally. We evaluated its performance on a PC computer (Pentium M 1.5
GHz processor with 512 MB memory). For our simulations we used experimen-
tal values from [6], assuming that the size of Σ may vary from 60 to 80 and
attack signatures consist of no more than 8 events. We generated a random
event sequence σ over an alphabet of size Σ = 80 and measured runtimes of
SigITL∗-Match for searching a set of signatures from [13]. Our preliminary ex-
perimental results for various sizes of σ are given in Table 1. We have skipped
results of tests for finding a set all occurrences, because even for small |σ| this
set was indeed very large. In cases of finding the first match and the shortest
match, the algorithm was very fast even for very long event sequences. Similarly,
finding occurrences from the set k-Match was also very quick. For example, our
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Table 1. Runtimes of SigITL∗-Match algorithm for finding various types of occur-
rences of signatures: ϕ1 = (♦(A ; B)∧♦C) ; D, ϕ2 = ♦A ; (B∧�¬C) ; D and ϕ3 = ((♦A ;
(B ∧ �¬E)) ∧ ♦(D ∨ F)) ; C. The tϕ stands for runtime (in seconds) and nϕ for |k-
Match(ϕ, σ)|

|σ| FirstMatch ShortestMatch
tϕ1 tϕ2 tϕ3 tϕ1 tϕ2 tϕ3

1000 0.003 0.012 0.0007 0.004 0.008 0.012

10000 0.0035 0.015 0.0009 0.024 0.036 0.064

100000 0.0038 0.019 0.0012 0.232 0.296 0.564

1000000 0.0052 0.025 0.0019 2.34 2.97 4.63

|σ| 25-Match 50-Match
nϕ1 tϕ1 nϕ2 tϕ2 nϕ3 tϕ3 nϕ1 tϕ1 nϕ2 tϕ2 nϕ3 tϕ3

1000 1 0.008 4 0.012 3 0.02 14 0.032 6 0.024 19 0.12

10000 2 0.04 9 0.056 6 0.108 21 0.092 24 0.116 34 0.336

100000 24 0.328 61 0.46 35 0.912 150 0.744 180 1.124 206 2.648

1000000 241 0.396 539 4.76 336 9.29 1615 7.96 1844 10.66 2072 25.85

algorithm found all 2072 occurrences from the set 50-Match, in the sequence
of size |σ| = 106 in the time less then 26 seconds, what gives approximately
38 thousands of events per second. At this point, we already have some more
ideas how to better optimize our algorithm, but nevertheless at this stage, our
experimental results look very promising.

7 Conclusion and Future Work

In this paper, we have presented the way of extending the existing methods
of intrusion detection systems based on a temporal logic approach to precisely
localize the multi-event attack signatures in an event sequence. Our research was
mainly motivated by the fact that the Eagle logic and Interval Temporal Logic
in particular are well established approaches in real IDSs, but their inability
to locate accurately the signatures detected is a major limitation for practical
runtime systems. To address this limitation, we have formally introduced the
notion of an occurrence of a signature match in the SigITL logic, which allows
us to develop a logical approach to localizing signatures in the event sequence.
In our single formal matching framework we have included a few different types
of signature matches existing in the intrusion detection literature.

The performed experiments show that our matching algorithm using basic
simplification techniques of temporal logic formulas is very fast and efficient.
However, the choice of a kind of matching set reported should always depend
on IDS performance limits, the type of an attack and the consequent risk to the
system or network that is under protection.

In our future work on logic based intrusion detection systems, we plan to intro-
duce the localization mechanism for the Eagle-based Monid tool by extending
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our framework with parameters to enable reasoning about data values for more
advanced event correlation. A more user-friendly interface will be provided and
published, and the tool will be evaluated on real case studies.
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Abstract. Modern information attacks are perpetrated by the deploy-
ment of computer worms that propagate extremely fast leaving little or
no time for human intervention. This paper presents the concept of a fully
automatic computer network security system capable of timely detection
and mitigation of information attacks perpetrated by self-replicating ma-
licious software. The system will detect an attack and synthesize and de-
ploy specialized self-replicating anti-worm software for attack mitigation
with a capability to alter the network topology to quarantine infected
portions of the network. Special technologies allowing for the observabil-
ity and controllability of the overall process will be implemented thus
facilitating the deployment of advanced control schemes to prevent an
overload of the network bandwidth. Particular components of this sys-
tem have been developed by the authors or suggested in literature thus
suggesting its feasibility. The implementation aspects of the described
system are addressed. The technology described herein emulates im-
mune defenses honed to perfection by million-year evolution to assure
the safety and dependability of future computer networks. It presents a
new paradigm in computer network security.

Keywords: Computer network, computer worms, immune response, in-
formation attacks, automatic systems.

1 Introduction

Our ever-growing dependence on computer networks is accompanied by ever-
growing concerns about the networks vulnerability to information attacks and
the dependability of the existing network security systems. Major threats, well
recognized by government, private institutions and individual users, are stem-
ming primarily from self-replicating malicious software. Modern worms and
viruses propagate through the Internet much faster and cause more damage
than their predecessors. In 2001 the Code Red worm propagated faster than the
Melissa virus in 1999 and much faster than Morris worm in 1988. In the case
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of the Code Red worm, only several days passed from the moment of its first de-
tection to a wide spread propagation of malicious activity. Several months later,
the Nimda worm caused severe damage within one hour of the detection of infec-
tion. The Slammer worm caused harm in only a few minutes. Since Code Red,
the development of complex infection strategies has progressed to such a level
that in January 2003, the W32.SQLExp worm propagated so fast that human
intervention could not prevent its spread.

Effective counter-measures to worm attacks consist of revealing the infected
hosts as quickly as possible in order to minimize damage and searching for the
vulnerabilities in security systems. However, there are many factors that decrease
the efficiency of these efforts. Every year about four thousand new ”holes” in
security systems are revealed. At present more than 200 million computers are
connected to the Internet and their numbers are growing rapidly. Every moment
of every day millions of vulnerable computers are interconnected through the In-
ternet. Sophisticated attacks can provide resources to adversaries allowing them
to utilize the vulnerable computers to aide in carrying out future wide spread
attacks. Many attacks are performed in a completely automatic fashion and are
deployed at the speed of light throughout the Internet without regard to geo-
graphical and national borders. Technologies utilized by malicious software are
becoming more and more complex and in some cases are completely concealed
from detection that ultimately has the effect of increasing the time necessary
for the detection and analysis of an attack. The combination of these factors
results in a situation where even with the fastest response involving human in-
tervention a major cyber attack would have enough time to cause significant
damage to the national infrastructure. This reality is well recognized by a num-
ber of researchers and justifies the necessity for the development of novel, fully
automatic, decentralized computer network defenses emulating known immune
mechanisms honed to perfection by multi-million year evolution.

A successful solution to this problem cannot be achieved without understand-
ing the complex phenomena of propagation of self-replication entities in the
network in conjunction with their effect of the network bandwidth. An AFOSR
project [1] resulted in a mathematical model that provided not only a quanti-
tative basis for the understanding and simulation of these phenomena, but also
a basis for the development of a control mechanism for mitigation of viral ac-
tivity by deployment of an anti-worm. While any deployment of self-replicating
software could be highly detrimental to the network, it is necessary to develop
a technology for making the process of co-replication of worm and anti-worm
observable and controllable. It will utilize the previously developed Dynamic
Code Analyzer [2] deployed in a number of specially designated machines dis-
tributed within the network for the detection and correlation of instances of
self-replication behavior of software indicative of computer worm propagation.
The detection would trigger synthesis on demand of a specialized anti-worm that
could be released in the network. A statistical selective sampling procedure is
proposed for the estimation of the number of hosts in the network affected by the
worm and anti-worm by periodic scanning a relatively small group of randomly
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chosen hosts. This approach, minimizing the impact on the network bandwidth,
is suggested as the means for the generation of a feedback loop that is crucial
for the implementation of any control mechanism. A technology facilitating a
controlled time-varying rate of self-replication of the anti-worm is proposed. Fi-
nally, an advanced control law relating the propagation rate of the anti-worm to
the feedback information will be established in full compliance with modern con-
trol theory. The resultant technology is being implemented in an experimental
computer network testbed built at Binghamton University under the AFOSR
DURIP funding as a fully operational prototype of a fully automatic defense
mechanism for a computer network emulating an active immune response.

2 Existing Research

In 1991 Kephart pioneered the application of epidemiological models for the math-
ematical description of the complex dynamic phenomenon of propagation of self-
replicating software such as simple file viruses [3]. File viruses distribution in net-
works was formalized in terms of probability laws [4, 5] for homogeneous, localized
and random replication patterns. He should be credited for the introduction of the
very concept of immune system for computers in [6] and its further development
in [7] and [8], [9]. Worms have received true recognition after the attack of the
Code Red worm in July, 2001. Consequently, the first propagation case study was
presented in [10], where authors utilized the collected data for the analysis of the
infection and disinfection rates. More fundamental analysis of the worm propaga-
tion dynamics was performed for SQL Slammer worm in [11].

Applications of various epidemiological models for modeling and analysis of
real and theoretical worms with respect to different network topologies and scan-
ning techniques could be found in [12], [13], [14], [15], [16], [17], [18], [19]. In [15]
and [18] special studies were conducted to investigate several key characteris-
tics of infection, including the rate of infection through the network, the rate
at which individual nodes are re-infected during an attack, and the effect of
immunization of certain nodes in the network. The propagation intensity of the-
oretical worms was studied for different scanning techniques in [16]. Zou et al.
[17] introduced a two-factor worm model that considered the effect of human
countermeasures as well as the effect of the network congestion caused by exten-
sive worm scanning activities. Authors of [20] presented a dynamic quarantine
system for infected processes based on two principles, the preemptive quarantine
and feedback adjustment.

The concept of an active defense mechanism for a computer network at-
tacked by a worm was presented by Liljenstam and Nicol in [21], [22], where
authors discussed different models of active defenses and their effect on the
network throughput. The active immune-like network response was called reac-
tive antibody defense in [23]. The consideration of active defense mechanisms
has immediately prompted the consideration of the effect of limited network re-
sources, such as bandwidth. It was pointed out that the deployment of a so-called
anti-worm may significantly consume network bandwidth as well as in the case
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of a malicious worm [24]. In [24] authors emphasize the importance of applying
optimal reactive response that takes into account the infection and treatment
costs in terms of network resources. Authors discuss possible ways to determine
optimum level of the defense efforts to be applied for a given rate of infection
spread that would minimize some total cost function.

Recently, a new generation of defense mechanisms for computer networks,
minimizing the need for human intervention, became increasingly popular. Au-
thors in [25] presented a technique for automatic generation of an anti-worm
through detecting and substituting payload of the malicious worm. As a result,
they proposed a method that has a potential for transforming a malicious worm
into an opposing anti-worm. A system for automatic revealing susceptible points
and generating a patch for target application is presented in [26]. A feasibility of
automatic signature generation for worms perpetrating buffer overflow attacks
has been studied in [27], [28].

In summary, it could be noted that it is recently recognized that only a fully
automatic defense mechanism can protect computer networks from modern, fast
propagating worms. As with any automatic process, this defense mechanism
cannot exist without the implementation of a stable negative feedback con-
trol scheme. Technical literature, however, does not offer any examples of such
schemes.

In 2001-02 the authors were engaged in the project BASIS (Biological Ap-
proach to System Information Security) funded by Air Force Research Labora-
tory. This effort was aimed at the establishment of important similarities between
a biological immune system and a computer network subjected to an information
attack that could be explored for the development of the next generation of com-
puter network defenses. This project resulted in a number of publications [29],
[30] and provided the team with valuable new concepts in computer security.

Project Recognition of Computer Viruses by Detecting their Gene of Self-
Replication, also funded by the air Force Office of Scientific Research (AFOSR),
has been exploring the notion that while most malicious software self-replicates
in order to create a computer epidemic maximizing its destructive effect, self-
replication of legitimate software is very uncommon. At the same time, the
number of practical self-replication techniques utilized in viruses and worms is
quite limited and requires the developers of new attacks to utilize the same
old self-replication techniques in new viruses and worms. Consequently, the de-
tection of self-replication functionality in computer code provides the basis for
the detection of both known, and what is more important, previously unknown
malicious software. It was found that monitoring and analysis of system calls
during the execution time provides the most dependable approach for the detec-
tion of attempted self-replication [31], [32]. This has resulted in the development
of a Dynamic Code Analyzer (DCA) [31], a resident software tool that moni-
tors system calls and detects specific subsequences (patterns in the system call
domain) indicative of self-replication. The process engaged in self-replication
would be suspended and the user is given an authority to continue or termi-
nate the process. The DCA has been successfully tested against both known and
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previously unknown malicious software. It could be seen that while DCA may
not prevent the damage caused to an individual host, it surely prevents the
development of computer epidemics.

The AFOSR project Emulation of Active Immune Response in Computer Net-
works allowed the authors to investigate the effect of self-replicating anti-viruses
or anti-worms on a computer network subjected to an information attack. The
obtained mathematical model of the networks Active Immune Response (AIR),
consistent with the main concepts of biological immunology, will be presented
below. . It effectively represents the major properties of a computer network de-
scribing the complex interplay of the factors responsible for the propagation of
self-replicating software in the network, both worms and anti-worms, and reflects
typical strategies of the information attacks perpetrated by computer worms.

It is expected that a self-replicating anti-worm would implement the most
advanced propagation strategies resulting in disinfection and/or immunization
of individual hosts. Consequently, both the worm and anti-worm activity has
to be quantified by the number of infected hosts and the number of disinfected
or immunized hosts correspondingly. Worm activity has a strong impact on the
bandwidth of networks. The bandwidth of a network can be considered as the
most relevant network resource that affects both the quality of network oper-
ation as well as the propagation of self-replication software. Consequently, the
bandwidth of a network becomes a key factor to be addressed in a mathematical
model of the networks immune response. While there are many alternative ways
to quantify the bandwidth of a network, it typically represents the amount of
transmitted information per unit of time.

The resultant AIR model follows the principles of operation of a biologic
immune system describing the interaction between resources of the organism,
antigens, and the immune system. The model variables represent (1) network
resources, expressed as the available capacity (bandwidth) of the information
channels (bits/sec) utilized by the worm and anti-worm software, (2) number
of disinfected/ immunized hosts, and (3) number of infected hosts. It could
be seen that the above variables are interrelated: differential increments of in-
fected and disinfected hosts directly affect the network bandwidth, propaga-
tion rates of the worm and anti-worm depend on the available network band-
width, the number of infected computers depends on the propagation rates of
worm and anti-worm, etc. The developed model comprises several nonlinear
stochastic differential equations; the stochastic nature of the AIR model is re-
flected by the fact that the numbers of infected and disinfected/immunized hosts
are statistical estimates of the respective quantities that in reality could be
obtained by the scanning of a relatively small group of randomly chosen hosts
(selective sampling).

The mathematical model provides the basis for the implementation of various
control schemes facilitating the deployment of an observable and controllable
anti-worm within the limited bandwidth of the network thus achieving sustain-
able operation of a network subjected to an information attack.
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3 Mathematical Model of the Immune-Type Response of
the Network

Mathematical modeling the immune response necessitates analyzing the factors
responsible for the propagation of viruses and revealing the most significant of
them in order to define strategies which have a high probability of being used
by the creators of worms in the future.

In order to propagate, computer worms scan a wide-area network, striving to
find vulnerabilities in software of individual hosts. Having found the IP-address
of a vulnerable host, the worm simply injects itself from the network into the
unprotected machine using previously revealed vulnerabilities. Once installed in
the hosts memory, the worm, searches for other vulnerable computers and sends
itself to their IP addresses. While different types of worms use different propa-
gation strategies and exhibit different propagation rates, all of them successfully
propagate, using the slightest vulnerability to penetrate existing security sys-
tems. It could be seen that the number of infected (or scanned) hosts is one of
the variables quantifying the attack.

Worm activity has a negative impact on the bandwidth of networks. For ex-
ample, the code size of the quickly propagating Slammer is very small, 404 bytes
including the header. The small size accounts for the high speed of its prop-
agation. During the first minute of attack, the quantity of infected computers
grew exponentially, doubling every 8.5 seconds. By searching for potential vic-
tims during a 10-minute time period, the worm scanned about 3.6 billion out of
approximately 4 billion existing Internet addresses, reaching the scanning rate of
55 million hosts per second during the first three minutes of the attack. As the
attack progressed, this rate decreased due to the limited networks bandwidth.
Although the worm did not carry destructive instructions, as did Code Red and
Nimda which changed files and damaged web-sites, it caused serious damage
during the peak of the epidemic consuming a significant portion of the Internet
bandwidth, and interfering with the operation of many servers. Consequently,
the bandwidth constitutes the main network resource relevant to our problem,
and properly quantified presents another important characteristic of the attack.

A mathematical model of the network response cannot be established without
describing the effects of anti-worm activity, i.e. the worm-like propagation of anti-
worm programs. Such anti-worm technology could be exemplified by Welchia,
which is one of a few worms intended for the neutralization of another mali-
cious program, Blaster worm. In the same way as Blaster, Welchia penetrates
into a computer through a gap in Windows firewall, first having verified that
the computer is infected with Blaster. Welchia then deletes Blaster, completely
restores the attacked system, and loads the Microsoft update thereby fixing the
vulnerability. Understandably, the propagation of anti-worms is affected by the
limited networks bandwidth and can be described by the number of disinfected
(or scanned) hosts or released anti-worm software units.

Now it could be seen that the mathematical model of the networks immune-
type response should describe the complex, dynamic interaction of three factors,
the number of infected hosts (or scanned by the worm), the number of disinfected
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hosts (scanned by the anti-worm, or released anti-worm software units) and
their combined effect on the network bandwidth. Following the principles of
operation of the immune system describing the interaction between resources
of the organism, antigens, and the immune system, we bring into consideration
the basic variables of the mathematical model establishing the correspondence
between the biological and computer network concepts.

Number of infected hosts: Let variable X(t) represent the number of infected
computers that would exponentially increase due to the worm propagation and
decrease due to the anti-worm activity. The equation describing the dynamics of
the number of infected computers at the absence of anti-worm and with infinite
bandwidth could be described in the following way:

X (i) =
nw (N −X (i− 1))X(i− 1)

N
+X(i− 1), X(0) = X0 (1)

where nw is the rate of sending attack packets by every infected host, X0 ini-
tial population (number of attack sources), N is total number of susceptible
hosts in the network. The first multiplicative term in (1) represents approximate
probability of hitting vulnerable host.

Number of deployed units of anti-worm software: Let Y (t) represent the num-
ber of deployed units of anti-worm software (number of hosts containing anti-
worm). It is expected that the anti-worm population size, governed by some
control mechanism, will exponentially increase to oppose the propagating worm
and decrease as the worm being defeated. The dynamics of the appropriate
process at the early stage of the attack can be defined as:

Y (i) = kiY (i− 1)βi, Y (0) = Y0 (2)

where ki = X (i− 1)µ is the rate of sending attack packets by every unit of anti-
worm at time i, βi = (N − Y (i− 1))/N is an approximate probability of hitting
a vulnerable host or a host infected by the worm at time i (a victim for the
anti-worm), Y0 is initial anti-worm deployed population. It could be seen that
the rate of sending attack packets by anti-worm depends on worm population
size what reflects the control mechanism.

System resources: The bandwidth represents the joint capacity of the networks
communication channels and could be expressed in bit/sec. During the active
network response the bandwidth is utilized by the worm as well as anti-worm.
Introduce variable W (t) that denotes the amount of consumed bandwidth by
the worm and anti-worm during the attack. Note that before or after attack this
variable exhibits all properties of a characteristic of a stable, inertial system and
exponentially returns to the value of zero with time (network inertia accounts
for the finite connectivity within the network, its distributed nature, and various
phenomena slowing its operation). The equation describing the dynamics of the
consumed network bandwidth could be written as:

W (i) = −W (i− 1) · ψ +X (i− 1) · nw · θ + ki · Y (i− 1) · θ, W (0) = 0 (3)

where ψ > 0 represents the natural rate of change of bandwidth, θ - an amount
of consumed bandwidth due to transmitting of one attack packet of the worm or
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anti-worm. As it could be seen that the first term represents natural motion, the
second and third terms reflect current bandwidth consumed by the worm and
anti-worm respectively. To achieve realistic scenario of the worm and anti-worm
propagation one should set ψ to be much smaller than the amount contributed
by the worms.

Now let us modify equation (2) accounting for the effect of network bandwidth
on the propagation of the anti-worm and assuming that the anti-worm generation
effort is proportional to the number of infected computers (simple proportional
control law). Then the number of instances of the anti-worm (hosts infected by
anti-worm) will be changing according to the equation:

Y (i) = ki · Y (i− 1) · δi · βi − η · Y (i− 1) + Y (i− 1) (4)

where δi = (1−W (i− 1)/Wmax) is packet delivery probability, η is the rate of
the anti-worm population decrease in natural motion. The natural anti-worm
population decrease was introduced in order to achieve response decay in the
absence of the intruder. The packet delivery probability decreases if the con-
sumed bandwidth increases up to the maximum level (Wmax) which results in
total network congestion. This term decreases the anti-worm propagation rate
due to the bandwidth shortage.

Reconsider equation (1) taking into account that the bandwidth consumption
slows down the worm propagation process and the anti-worm activity can reverse
it due to disinfecting and patching. This process could be described as follows:

X (i) = αi · nw ·X (i− 1) · δi − ki · Y (i− 1) · δi · γi +X (i− 1) (5)

where αi = (N −X (i− 1)− Y (i− 1))/N is approximate probability of hitting
a vulnerable host at time i by one instance of the worm(nor infected by the worm,
nor the anti-worm), γi = X (i− 1) /N is probability of hitting a host infected
by the worm. The first term in (5) represents potential increase of the number
of infected hosts due to worm replication during one time tick, the second term
represents number of hosts disinfected and recovered by the anti-worm during
one time tick.

Hence, the mathematical model of the immune-type response of a computer
network is described by the following system of discrete-time nonlinear equations,
describing the inertial properties of the network and complex interaction between
its key variables, the consumed network bandwidth, the number of infected hosts,
and the number of deployed units of the anti-worm software:⎧⎨⎩

X (i) = αi · nw ·X (i− 1) · δi − ki · Y (i− 1) · δi · γi +X (i− 1)
Y (i) = Y (i− 1) + ki · Y (i− 1) · δi · βi − η · Y (i− 1)
W (i) = −W (i− 1) · ψ +X (i− 1) · nw · θ + ki · Y (i− 1) · θ

(6)

with the initial conditions

W (0) = 0, X(0) = X0 > 0, Y (0) = Y0 > 0 (7)

Table 1 summarizes the parameters of the model (6).
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Table 1. Model parameters

Parameter Formula Description

αi αi = (N − X (i − 1) − Y (i − 1))/N Probability of hitting a vulnerable
(nor infected by the worm, nor the
anti-worm) host at time i by one in-
stance of the worm

δi δi = (1 − W (i − 1)/Wmax) Packet delivery probability

ki ki = X (i − 1) · µ Rate of sending attack packets by
every unit of anti-worm at time i

βi βi = (N − Y (i − 1))/N Probability of hitting a vulnerable
host or a host infected by the worm
at time i (a victim for the anti-worm)

γi γi = X (i − 1) /N Probability of hitting a host infected
by the worm

µ static Proportional coefficient used in con-
trol law of the anti-worm generation
rate

nw static Rate of sending attack packets by
every unit of the worm

θ static Amount of consumed bandwidth due
to transmitting of one attack packet
of a worm or an anti-worm

ψ static Coefficient determining the rate of
decreasing of the amount of con-
sumed bandwidth in natural motion.

N static Total number of susceptible hosts in
the network (before worm and anti-
worm activity)

Wmax static Maximum available bandwidth

η static Rate of the anti-worm population de-
crease in natural motion

In the process of designing of the model (6) several reasonable assumptions
were made and some simplifications were introduced. Firstly, probabilities αi,
βi and γi were approximated assuming distribution identity and independence,
as well as neglecting network topology and infrastructure limitations. Secondly,
for the sake of simplicity, we assumed that the worm and anti-worm have only
one packet attack and utilize a QOS free transport protocol such as UDP. As an
example of such a worm in real life, on can refer to the well known SQL.Slammer
worm. Moreover, we assumed that network natural activity is much smaller than
the worm and anti-worm combined activity. These simplifications allowed us to
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Fig. 1. Worm and Anti-worm dynamics

use the linear law for packet delivery probability. While the linear formula may
not capture network congestion phenomena in all phases, it is still a good choice
considering the network bandwidth as a single value.

Analysis of the above equations indicates that they represent the natural mo-
tion of a nonlinear system that in the case of global asymptotic system stability
and regardless of the initial severity of the attack, signified by the value of X0,
results in W (∞) = 0, X(∞) = 0, Y (∞) = 0, i.e. full recovery of the network.
It is important to realize that equations (6) are stochastic by their very nature:
their parameters reflect the combined behavior of numerous hosts of the network
and therefore the obtained model can reliably describe the network in general
but not any individual host. Moreover, numerical values of the model parameters
reflect properties of a particular network and are subject to change depending
on many factors including the propagation engine and payload of the particular
worm.

The outcome of the simulation experiment is presented in the Figure 1 and
static parameter values are listed in the Table 2. The upper plot in figure 1
demonstrates consumed bandwidth as a percentage of the maximum (total con-
gestion) level (Wmax). The middle plot shows the number of infected hosts.
Finally, the lower graph demonstrates the rate of newly generated instances of
anti-worm, in other words number of infected hosts by anti-worm during the
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current time tick. The simulation results indicate that with the appropriate
choice of the model parameters, it realistically describes the nature of the active
network response: the increase of the number of infected hosts from some initially
introduced value, increase of the rate of deployed anti-worm software units in re-
sponse to the attack, drop of the bandwidth resource of the network (or increase
of the consumed bandwidth) due to the worm and anti-worm propagation, and
finally, the full recovery of the network from the attack.

Table 2. Model parameters

µ 0.00005
nw 0.01
θ 0.5
ψ 0.02
N 10000
Wmax 240
X (0) 200
Y (0) 10
η 0.00001

The value of the obtained mathematical model is in its demonstrated ability
to describe the interaction between the major variables capturing the behavior of
a network equipped with anti-worm defenses under the attack. Consequently, the
model provides a basis for the development and validation of advanced feedback
control mechanisms of the network defenses.

4 Principle of System Operation and Major System
Components

The principle of operation of an automatic defense mechanism capable of con-
trolled deployment of a self-replicating anti-worm in response to an information
attack on a computer network by self-replicating software is shown in Figure 2.
This figure depicts malicious software deployed from an attackers computer as it
propagates within the network. Eventually, it is detected by one of the special-
ized attack detection/identification stations dispersed within the network that
automatically extracts a binary signature of the detected malicious software and
transmits it to the Control station. Then a specialized anti-worm (self-replicating
patch) is deployed from the control station and also propagates through the net-
work disinfecting and immunizing individual hosts. Based upon the topology of
infected/uninfected hosts the Control station will ether send self-replicating anti-
worm software to prevent the propagation of the worm or logically disconnect
hosts from the network.

The propagation rate of the anti-worm is time-dependent and is defined by a
specially designed control law. The anti-worm is targeting the malicious software
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Fig. 2. Principle of operation of automatic security system for a computer network

specified by a binary signature loaded in its targeting mechanism. The network
computers (routers) are subjected to periodic selective scanning in order to esti-
mate the number of infected and disinfected (immunized) hosts. The control law
converts the feedback information on the overall status of a computer network
subjected to both the information attack and the effects of the self-replicating
anti-worm into numerical values of some parameters governing the propagation
rate of the anti-worm. This control law is synthesized on the basis of nonlinear
differential equations describing complex interplay between the number of in-
fected hosts, number of operating anti-worm units, and the available resources
of the network the remaining capacity of its communication channels.

4.1 Attack Detection/Identification

Attack detection/identification stations are interconnected host-based worm de-
tection systems dispersed within the computer network. Such a station is visual-
ized as a cluster of independent virtual computers, vulnerable to attacks, being
run on the same physical host. In a way, the virtual computers of the detec-
tion stations form a network within the network and exchange security related
information that is important for reliable detection of the attack and identifica-
tion of the attacker. Each virtual computer of the station is equipped with the
Dynamic Code Analyzer (DCA) capable of detecting attempted self-replication
[31]. When attacked by a computer worm or virus, the virtual computer of the
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detection station executes the instructions of the malicious software including
those resulting in its self-replication. It is commonly known that most malicious
software self-replicates in order to maximize the severity of the attack, and this
functionality typically invokes specific sequences (patterns) of system calls. The
DCA monitors system calls and is capable of detecting the specific patterns
of system calls indicative of self-replication. Upon detection of the attempted
self-replication, the DCA suspends the process in question, generates a specific
warning identifying the detected specific self-replication pattern and transmits
it to all virtual machines of the detection station. While the system calls-based
IDS are known to have a high rate of false positives, no further action is taken
until the same alarm is generated by another virtual machine, thereby drasti-
cally reducing the probability of false alarms. When the alarm is substantiated
by a warning from an additional source, a special procedure deployed at one
of the detection stations, capable of extraction of the binary signature of the
troublesome software is activated. The feasibility and general algorithms of such
procedures are discussed by several authors [25], [26], [27], [28]. The extracted
binary signature will serve as an ID of the worm/virus attacking the network
and it will be transmitted to the control station.

4.2 Generation of the Feedback Signal

A successfully implemented feedback signal is crucial for any self-regulating sys-
tem. In our situation the feedback signal represents the number of infected and
disinfected hosts that varies as the attack and countermeasures progress. While
scanning of the individual hosts of the entire network in a worm-like fashion is
clearly unacceptable, a selective sampling (scanning) approach commonly uti-
lized in quality control is adopted, and then the resultant problem is solved using
statistical inference.

For a given population size and fixed sample size this problem is usually
solved under some assumptions about the underlying statistical distribution of
the sample that is expected to be geometric. In reality, one does not know the
population size, i.e. the total number of hosts, since at any time computers may
be arbitrarily connected and disconnected from the network. As a result, the
geometric distribution assumption is not truly applicable. However, if the num-
ber of susceptible hosts is sufficiently large, we do not have to know the exact
number of vulnerable computers to apply the binominal distribution. Presum-
ably, the share of infected computers in a fixed size sample confirms to binominal
distribution with the mean value equal to the share of infected computers in the
whole population. In order to use statistical inference techniques to estimate the
mean value one has to ensure that the sample is identically and independently
distributed. In other words, the source must be stationary during the sample
selecting process that could be assured by two quite realistic assumptions, (1)
hosts whose status is polled are chosen uniform randomly, and (2) during the
scanning session the number of vulnerable hosts and number of infected machines
does not change.
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The independence requirement can be achieved using a random number gener-
ator. The identical property can be satisfied only if computers would be scanned
pseudo simultaneously, i.e. by a very short duration scanning session.

Under the assumption of binominal distribution, the percentage of infected
computers is estimated as a proportion parameter. The required statistical sig-
nificance of the estimate could be assured by the choice of the sample size. While
a closed-form solution for the exact confidence interval by the acceptance region
inversion does not exist, approximate solutions for a confidence interval based
on Central-Limit Theorem could be considered. Then a Clopper-Pearson (exact)
confidence interval for the estimate that provides an assigned coverage proba-
bility with any specified precision can be found via standard numerical methods
[32]. Its computation results in an iterative process leading in the definition of
the minimum sample size providing a specified relative error (statistical signif-
icance) of the estimate. Ultimately, this provides a theoretical foundation for
the utilization of selective scanning as the means of establishing a dependable
feedback representing the dynamics of the worm/anti-worm interaction process
in the network without a significant impact on the network bandwidth.

4.3 The Control Station

A control station is a computer equipped with software for generation and con-
trolled dissemination on demand of a specialized anti-worm (anti-virus). An anti-
worm is an already existing software entity that consists of a propagation engine,
a targeting mechanism and a payload, see Figure 3. The propagation engine im-
plements the most efficient propagation techniques of computer worms that im-
ply scanning of the network in the search of susceptible hosts and transmitting
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Fig. 3. Composition of an anti-worm
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the appropriate code to such hosts [18], [20]. However, unlike the common worm
intended to maximize the effect on the network, the propagation rate of the anti-
worm will be controlled according to a control law that takes into account the
number of infected hosts and the availability of the network bandwidth. This will
be achieved by an inherited replication counter that controls the allowable num-
ber of generations, K, and the allowable number of offsprings in each generation,
L, as the anti-worm propagates. The K and L numbers are time-dependent and
are defined by the control law and communicated to the control station. It could
be seen that having such a finite and controllable K,L combination results in the
limited life span of the anti-worm so that it will cease to exist as the attacking
worm is defeated, and due to the properly chosen control law does not congest the
network.

The standard payload of the worm implements functions resulting in the neu-
tralization of a worm if the host is infected and/or immunization of the host by
making it immune to the worm. Both functions could only be performed in re-
sponse to a particular worm that is uniquely identifiable by its binary signature
and detected by the standard targeting mechanism operating in the traditional
anti-virus software fashion. This could be achieved by loading the binary sig-
nature of the propagating worm extracted by one of the detection stations and
transmitted to the control station.

The anti-worm is designed to propagate in the same environment utilizing
some of the same vulnerabilities exploited by worms. This strategy is applicable
to anti-worm propagation in vulnerable systems, as well as systems that are al-
ready infected with the worm. Certain worm propagation scenarios may include
a self-patching worm behavior that would prevent an anti-worm from replicating
onto already infected machines. This situation may be resolved by implementing
such methods as establishing a dedicated communication channel for anti-worm
propagation, or disabling self-patching at the system level by utilizing a run-
time modification prevention approach. While such counter-measures are less
favorable in the global net environment due to local system modification re-
quirements, they would further enhance the functionality of the proposed active
immune response system.

In an effort to speed the recovery of an infected network, the various con-
trol stations will also have control of administratively close routers allowing for
quarantine and isolation of the infected portions of the network. If the infected
portions of the network can be isolated quickly, not only will further spread of the
worm be reduced, but the transmission of the anti-worm will be more successful
as networking resources will be worm free and available. In addition, knowledge
of the infection concentration will aid in guiding the anti-worm propagation.

Several ways of disconnecting or isolating hosts by the control station will
be investigated. Possibilities include disconnecting the host from the network
by disabling its various network interfaces, altering network address resolution
tables, or by dynamically changing host routing information and reconfiguration
of network routers and switches. Some of these techniques are rather simple to
implement but may not offer much flexibility in the recovery period while others
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can be quite complex, involving networking hardware from several vendors with
very different configuration methods.

4.4 The Control Law

The control law is responsible for the stability and efficient operation of the de-
scribed system. It will establish a relationship between the control parameters
of the anti-worm K,L, be responsible for the rate of its propagation, and pro-
vide feedback information representing the severity of the attack, namely, the
estimated number of infected hosts, disinfected hosts and the available network
bandwidth. The control law is formulated on the basis of the mathematical model
of the active network response developed under the existing AFOSR project [1].
After the expansion, linearization of equations (6), this model could be written
in a traditional discrete-time state-variable notation as⎡⎣w[n+ 1]

x[n+ 1]
y[n+ 1]

⎤⎦ = A

⎡⎣w[n]
x[n]
y[n]

⎤⎦+B

[
K[n]
L[n]

]
,

[
K[n]
L[n]

]
= −F

⎡⎣w[n]
x[n]
y[n]

⎤⎦
where w[n], x[n] and y[n[ are state variables of the active network response that
correspondingly represent the consumed network bandwidth, number of infected
hosts, and number of active (i.e. engaged in scanning activities) anti-worm units
at particular moments of discrete time, n=1,2,

K[n] and L[n] are the control efforts of the active network response represent-
ing the allowable number of generations and the allowable number of offsprings
in each generation of the anti-worm,

A is a matrix representing linearized complex interrelationships between the
number of infected hosts, number of active anti-worm units and the network
bandwidth,

B is a matrix representing linearized effects of the control parameters of the
anti-worm on the number of infected hosts, number of active anti-worm units
and the network bandwidth,

F =F[n] is a matrix of the state-variable controller,
A combination of the matrix-vector equations written above results in the

discrete-time description of the closed-loop system that effectively is the equation
of natural motion of an inertial system⎡⎣w[n]

x[n]
y[n]

⎤⎦ = (A−BF )

⎡⎣w[n]
x[n]
y[n]

⎤⎦
It is known that the steady-state regime of a dynamic system described by

such an equation is dependent on the eigenvalues of matrix ACL = A − BF
and such a system is stable, i.e. all eigenvalues of matrix ACL are located in the
left-hand half of the complex plane, is⎡⎣w(∞)

x(∞)
y(∞)

⎤⎦ =

⎡⎣0
0
0

⎤⎦
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Fig. 4. Adaptive control of the active network response

Therefore, it could be seen that for arbitrary matrix A and matrix B ap-
propriate selection of the controller matrix F would assure that the network
engaged in active response returns to its status preceding the attack. Moreover,
the selection of specific eigenvalues of matrix ACL utilizing eigenvalue assignment
techniques common in modern control theory enables the designer to manipulate
the duration of the entire attack mitigation process.

The authors are aware of the fact that the above situation is overly optimistic
due to the fact that matrix A and matrix B are poorly known and their val-
ues are time-dependent due to changing properties of the network and moving
point of linearization. It is proposed to estimate these matrices experimentally by
periodic deployment of a specially designed short-lived worm. The poor knowl-
edge of matrices A and B and their time-dependence could be addressed by
the application of a model-reference (adaptive) control law [34] that results in a
time-dependent controller matrix F = F [n]. The resultant control system con-
figuration is depicted in Figure 4.

Figure 4 shows a reference model (a simulation module) representing the
required closed-loop dynamics of the active response assured by the selection of
its fundamental matrix AM ,⎡⎣ z1(n+ 1)

z2(n+ 1)
z3(n+ 1)

⎤⎦ = AM ·

⎡⎣ z1(n)
z2(n)
z3(n)

⎤⎦
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It could be seen that the state variable of the active response, x(n), repre-
senting the number of infected hosts and the corresponding state variable of the
reference model, z1(n), have the same initial conditions, x(0) = z1(0) = x0 equal
to the initial number of infected hosts estimated at the detection of the attack.
The error vector, [e1(n), e2(0), e3(0)]T , is calculated as a discrepancy between
corresponding states of the reference model and active response and provides
the input information for the adaptation block implementing the adaptation
law. This law implements one of several techniques described in [34] resulting
in perfect asymptotic adaptation that implies that all three states of the active
immune response, the number of infected hosts, the number of active anti-worm
units, and the consumed network bandwidth will converge to zero regardless of
initial conditions, i.e. x0.

The control law is currently being researched under the AFOSR project [33].
There are several approaches leading to the definition of the control law. The hy-
perstability and positivity approach [34], developed in model reference adaptive
control is based on the linearization of the mathematical model of the network
response, design of a state-variable controller with adjustable parameters, and
the utilization of adaptation laws to assure the conformance of the parameters
of the controller to the immediate operational regime of the inherently nonlin-
ear, time-varying system. The method based on Liapunov stability conditions
deals directly with the nonlinear mathematical model of the controlled process
and also leads to the synthesis of a model-reference adaptive controller [34].
The model reference controllers have been successfully designed and verified by
the application to the nonlinear mathematical model of the network response
implemented in MATLAB.

5 System Implementation

The described system is being implemented in a computer network testbed at
Binghamton University equipped with powerful workstations and servers capable
of emulating up to 1000 interconnected, highly reconfigurable, independent hosts,
see Figure 5. Should less computationally intensive security tasks be investigated,
the number of virtual hosts could be further increased allowing for emulation of
an even larger network environment.

The testbed provides important data for computer network security research
including analysis of malicious software, vulnerability analysis of network compo-
nents, efficiency and dependability of various security mechanisms, and network
administration under attacks, thus facilitating the development of advanced net-
work defenses as well as technology that could be used in information warfare. It
provides a controlled physical environment in which a virtual network could be
established allowing for the realization and close monitoring of every phenom-
enon observed in computer networks subjected to information attacks, including:

- Scalable heterogeneous computer network facilities. The controlled physical
environment provides a safe, realistic and flexible foundation on which virtual
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networks can be constructed. To provide this capability, the facility includes
computers having different architectures (PCs, Suns, and Macs) running a
variety of operating systems in diverse configurations and interconnected by
both a high-speed wired network as well as a wireless network.

- Means of inter-computer communication and secure network administration.
The physical network must not only support a real-time virtual networked
environment but also provide security and safety, containing attacks within
the virtual network. Dedicated servers are used for network support and
security analysis administration. High-speed network switches, routers and
hubs as well as dedicated isolated wireless networking hardware provides the
physical backbone for the network. Network management and monitoring
software assure safety and ease of administration.

- Capabilities for establishing virtual environments enabling network simula-
tion, monitoring, and testing. A virtual environment comprising hardware
virtualization software emulating a variety of hardware configurations and a
diverse set of operating systems is established within the physical testbed in-
frastructure. The use of hardware virtualization ensures scalability and fast
recovery. In addition, hardware and software means will be provided for the
emulation of the Internet infrastructure: virtual Internet service providers,
virtual users on various connections, virtual DNS servers, web servers, file
servers, peer-to-peer communication environments, etc.

Fig. 5. Computer network testbed at Binghamton
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- Support for simulation, analysis, and testing of computer defense mecha-
nisms. A variety of hardware and software tools, including access control,
intrusion detection and anti-virus tools, will provide the defensive compo-
nent of the simulated networks as needed.

- Support for real-time emulation of network attacks. This component sup-
ports realistic attack scenarios to be tested within a controlled environment
and includes computers deploying various types of information attacks (hard-
ware and software attack tools).

- Support for real-time monitoring and forensic analysis of attacks This com-
ponent provides the means for monitoring and post-attack damage assess-
ment including code analysis software, forensic tools, and hi-end code disas-
semblers and debuggers for fast analysis of new viruses, worms and exploits,
as well as for vulnerabilities analysis of legitimate software
It could be seen that the above described computer network testbed provides
an ideal environment for the implementation of the active immune system
for a computer network described herein.

Acknowledgement. The authors are grateful to Dr. Robert Herklotz the Air
Force Office of Scientific Research (USA) for supporting this research and to
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Abstract. Based on mathematical models of immunocomputing, this paper  
proposes an approach to intrusion detection that allows both low-level signal 
processing (feature extraction) and high-level ("intelligent") pattern recognition. 
The key model is the formal immune network (FIN) including apoptosis 
(programmed cell death) and immunization both controlled by cytokines 
(messenger proteins). FIN can be formed from the raw signal using discrete tree 
transform, singular value decomposition, and the proposed index of 
inseparability in comparison with the Renyi entropy. The speed and the 
accuracy of the approach probably mean a further step toward placing more of 
the intelligent functions on the chip. 

Keywords: formal immune network, immunochip, intrusion detection.

1   Introduction 

Artificial immune systems (AIS) [1], [2] and immunocomputing (IC) [3] are 
developing as the approaches of computational intelligence [4] like genetic algorithms 
and artificial neural networks (ANNs) also called neurocomputing. Recent advances 
in AIS [5] include a stochastic model of immune response [6], an aircraft fault 
detection [7], and intrusion detection [8]. Recent advances in IC include the 
mathematical models for biomolecular immunocomputer [9], brain research [10], 
[11], [12], reconstruction of hydrophysical fields [13], signal processing [14], [15], 
and intrusion detection [16], [17].  

The present paper reports a set of mathematical models of IC specified for 
intrusion detection by intelligent signal processing. The key model of the approach is 
the formal immune network (FIN). In the training mode, FIN is formed from the raw 
signal using discrete tree transform (DTT) [14], [18] and singular value 
decomposition (SVD) [19]. After the procedures of apoptosis (programmed cell 
death) and immunization, the result of such feature extraction by FIN is estimated by 
the proposed index of inseparability in comparison with the Renyi entropy [20]. In the 
recognition mode, the current signal is processed by DTT, mapped to the FIN, and 
recognized by the cytokine class of the nearest point cell of the FIN.  

The models have been implemented as a computing scheme (architecture) of an 
immunochip for intrusion detection and tested on a fragment of the UCI KDD archive 
[21].
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2   Mathematical Models 

2.1   Formal Immune Network 

According to [22], FIN is defined as a set of cells ),...,( 1 mVVW = . Cell is a pair 

),( PcV = , where class c (cytokine type of cell) is natural number Nc ∈ , whereas 

),...,( 1 qppP =  is a point of the q-dimensional Euclidian space qRP ∈ , which lies 

within the unit cube 1≤P , where },...,max{ 1 qppP =  is the Tchebyshev norm. 

Let the metric jiij PPd −=  be distance between cells Vi and Vj (their "affinity" or 

separability). Let Rh ∈  be given threshold. Let cell Vi recognizes cell Vk if they have 
different classes and the distance between them is lower than the threshold:  

ki cc = , hdik < , ijik dd < , WV j ∈∀ , ij ≠ , jk ≠ .

Fix some FIN1 ("innate immunity") as a non-empty set of cells: 01 ≠W . Let  FIN 

1WW ⊆  be a subset of FIN1. Let the behavior ("affinity maturation") of FIN is 

defined by the following rules. 

Rule 1 (Apoptosis). If cell WVi ∈  recognizes cell WVk ∈  then remove Vi  from W .

Rule 2 (Immunization). If cell WVk ∈  is nearest to cell WWVi \1∈  among all cells 

of W : ijik dd < , WV j ∈∀ , whereas ki cc ≠ , then add  Vi  to W .

Let AW  be FIN as a consequent of application of apoptosis to all cells of FIN1. Let  

IW  be FIN as a consequence of immunization of all cells of AW  by all cells of FIN1. 

Note that the resulting FIN depends on the ordering of cells in FIN1. Further it will be 
assumed that the ordering is given.  

Consider some general mathematical properties of FIN.  
It is obvious that neither the result of apoptosis AW  nor the result of immunization 

IW  can overcome 1W  for any FIN1 and any threshold:  

hWWWWW IA ,,, 111 ∀⊆⊆ .

It can be also shown that for any FIN1 there exists minimal threshold Ah  such that 

apoptosis does not change 1W  for any h lower than Ah : 1WWA = , Ahh <∀ .

The following Proposition gives more important and less evident property of FIN. 

Proposition. For any 1W  there exists threshold Ih  such that consequence of apoptosis 

and immunization )(2 IhW  provides the minimal number of cells || 2W  for given 1W

and any h: |)(||)(| 22 hWhW I ≤ , h∀ , 12 WW ⊆∀ .
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The proof of this proposition is given in [22]. 
Actually, the proposition states that the minimal number of cells in FIN2 after 
apoptosis and immunization is a kind of "inner invariant" of any FIN, which depends 
on the innate immunity FIN1 but does not depend on the affinity threshold. 
Practically, it means that such invariant can be found for any FIN by apoptosis and 
immunization without considering any threshold at all. 

Now we can define a general model of molecular recognition in terms of FIN.  

Let "epitope" (antigenic determinant) be any point qRP ∈ . Note that any cell of 
FIN also contains an epitope, which lies within the unit cube.  

Let cell iV  recognizes epitope P by assigning him class ic  if the distance ),( PVd i

between the cell and the epitope is minimal among all cells of FIN:  

)},(min{),( PVdPVd ji = , WV j ∈∀ .

Let pattern ("molecule") be any n-dimensional column-vector ],...,[ 1 ′= nzzZ ,
nRZ ∈  where ][ ′ is symbol of vector-matrix transposing (so that Z ′  is row-vector). 

Let pattern recognition be mapping of the pattern to an epitope: PZ → , and 
recognition of the epitope by the class c  of the nearest cell of FIN.  

2.2   Singular Value Decomposition 

Consider the mathematical model of mapping any pattern to FIN. Let mZZ ,...,1  be n-

dimensional training patterns with known classes mcc ,...,1 . Let ],...,[ 1 ′= mZZA  be 

training matrix of dimension nm × . Consider SVD of this matrix: 

''
333

'
222

'
111 ... rrr YXsYXsYXsYXsA ++++= ,

where r is the rank of the matrix, ks  are singular values and kk YX ,  are left and right 

singular vectors with the following properties:  

1' =kk XX , 1' =kkYY , 0' =ik XX , 0' =ikYY , ki ≠ , rk ,...,1= .

Consider the following map qRZ →  of any n-dimensional pattern nRZ ∈ :

k
k

k YZ
s

p '
1= , qk ,...,1= .                                     (1) 

According to [3], formula (1) can be computed as binding energy between two 
formal proteins: Z ("antigen") and  kY ("antibody"). 

2.3   Discrete Tree Transform 

Consider the mathematical model of forming pattern from any one-dimensional signal 
(time series). Let },...,{ 1 nttT =  be a fragment of signal, where Rt ∈  is real value in 

general case, 02 Nn =  and 0N is some number exponent so that n  is a power of 2. 
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Let 12 Nu = , 01 NN ≤ . According to [14], the dyadic DTT of T is the following 

map:  

}{ ,kuaT → ,
−+

=
ku

uk
iku t

n
a

)1(1
,

1
, 102,...,1 NNk −= .

Let 1Nl =  be DTT level: 00 Nl ≤≤ . Let us denote the DDT map as follows: 

)(lTT → , },...,{ )()(
1

)( l
n

ll ttT = , ku
l

i at ,
)( = , kuiuk ≤≤−+ )1(1 .

Consider the following modification of DTT.  
Consider n  as the size of running window. Consider a fragment of signal 

},...,{ 1, niiin ttT ++= , which size is equal to n . Consider a triplet of fragments 

1,0,1, −+− nnnnn TTT , which size is equal to n3 . Consider the sequence of DTT of the 

middle fragment 0,nT  with level l  and window n : )(
,,
l
inin TT → , 1,...,1 −+−= nni .

This running window processes n  times any count of signal 0,nj Tt ∈  of the middle 

fragment: )(),...,( )(
1,

)(
1,

l
jnj

l
njnj TtTt −+− , where nj ,...,1= . Thus, the result of processing 

)( )(
1,

l
jnjj Ttz −= , apart from the count jt , depends also upon 1−n  previous and 1−n

next counts of raw signal.  
Consider the values nzz ,...,1 , obtained by the processing of any fragment inT , , as 

the pattern: ],...,[ 1 ′= nzzZ .

According to [14], [18], the proposed approach to signal processing is inspired by a 
mode of biomolecular computing [9], when immune cells chop unknown antigen to 
its local singularities and expose them to the immune system. Analogously, our 
approach represents unknown signal as a tree of data, and chop the branches of the 
tree at the level l  to detect local singularities of the signal. 

2.4   Entropy and Separability 

According to the above models, the feature extraction method in general is as follows.  

1. Extract training patterns from the signal. 
2. Form q -dimensional FIN1 ( 1m  cells). 

3. Find its inner invariant FIN2 ( 12 mm ≤  cells). 

As the result, the q -dimensional points of FIN2 
2

,...,1 mPP are considered as the 

feature vectors that represent the signal.  
The following task is to estimate a quality of such feature extraction. This can be 

done, e.g., using the special entropy proposed in [20] and proved to be rather useful 
metric of very large networks regarding the task of intrusion detection [23].  

According to [20], [23], the Renyi entropy of j-th dimension of FIN can be defined 
as follows: 
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=
−=

m

i
ijj p

m
e

1

2
2 )(log

1
,

where mjj pp ,...,1  are the values of  j-th coordinate of the points of FIN mPP ,...,1 .

Let us consider the maximal entropy as the Renyi entropy of FIN: 

}max{ jee = , qj ,...,1= .

Usually, entropy is considered as a measure of disorder. The lower is entropy the 
lower is disorder of the system. 

Consider another metric which is more specific to FIN. Let Ih  be the minimal 

distance between any pair of cells of FIN which have different classes: 

}min{ ijI dh = , ji ≠ , ji cc ≠ .

Let us define index of inseparability of FIN as follows: 

=
Ihm

m
f

1

2ln .                                                    (2) 

Note that 1m  is number of cells in FIN1, whereas 2m  is number of cells in FIN2 

after apoptosis and immunization. Note also that 12 mm =  for FIN1. Thus, the greater 

is minimal distance Ih  the lower is the index and the better is the separability 

between different classes of any FIN. 

3   Computing Scheme 

General computing scheme (architecture) of the approach is show in Fig. 1.  
In both the training and the recognition modes, the fragment inT ,  is extracted from 

the signal. Using the running window size n , this signal fragment is processed by 
DTT level l  to extract pattern (antigen) ],...,[ 1 ′= nzzZ .

In the training mode, training matrix ],...,[ 1 ′= mZZA  is formed from the training 

patterns. Using SVD of this matrix, q  right singular vectors (antibodies) qYY ,...,1

are determined and q -dimensional FIN1 is formed, which contains 1m  cells. Using 

apoptosis and immunization, FIN1 is reduced to FIN2, which contains 2m  cells. As 

the result, any signal fragment is mapped to the nearest point of q -dimensional FIN2: 

jin PT →, , 2,...,1 mj = , TNi ,...,1= , 1+−= nNN ST , where SN  is total counts in 

the signal, whereas TN  is number of fragments of length n . To obtain the best 

feature extraction, the size of the running window n  and the DTT level l are selected 
by the minimal value of the index of inseparability (2) of FIN2. 
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Fig. 1. Computing scheme of intrusion detection by an immunochip 

In the recognition mode, the current antigen is mapped to FIN2, using the binding 
energies (1), and recognized by the nearest point of FIN2. If the antigen coincides 
with any fragment of the training signal, then it is exactly recognized. The proof of 
this feature is given in [22]. 

4   Test Examples 

The file <kddcup_data_10_percent_gz.htm> (7.7 Mb) from the UCI KDD archive 
[21] has been utilized for testing the approach. This file contains 51608 network 
connection records. Any record (file string) contains 42 parameters: 1) duration, 2) 
protocol_type, 3) service, 4) flag, 5) src_bytes, …, 41) dst_host_srv_rerror_rate, 42) 
attack_type. Parameters ## 2, 3, 4, 42 are symbolic, the other ones are numerical.  

Parameter #5 (src_bytes) has been arbitrary utilized as a source of signal. A value 
of this parameter is the number of bytes sent from a source IP address to a target IP 
address in the past two seconds under some well defined protocol. Each connection is 
labeled as either normal, or as an attack, with exactly one specific attack type.  

Consider a short example of signal (signal-1) in Fig. 2, where 510=SN counts 

(i.e. 17 minutes of network traffic). The type of intrusion or normal count are given in 
Tab. 1 where the FIN cell class is }31,...,0{=c , 0=c  corresponds to the normal 

counts, 0>c  corresponds to the intrusion counts and the classes of the intrusions 
have been taken from [16]. 
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Consider 400=trainN  training counts and 510== Stest NN  test counts. Consider 

three-dimensional FIN: 3=q . Compute the length of the minimal normal (without 

any intrusion count) fragment of signal-1: 53min =n . This determines the restrictions 

on the size of running window: qn ≥ , min3 nn ≤ . Thus, }16,8,4{=n .

Fig. 2. Counts of signal-1 (gray – normal, black – intrusion) 

Table 1. Types of the counts of signal-1 

counts attack_type cell class counts attack_type cell class 
1-53 normal 0 292-355 normal 0 
54-55 buffer_overflow 3 356-359 ipsweep 0 
56-129 normal 0 360-368 buffer_overflow 3 
130-152 smurf 22 369-370 land 8 
153-197 normal 0 371-383 neptune 12 
198-242 portsweep 17 384-400 normal 0 
243-290 normal 0 401-500 normal 0 
291 land 8 501-510 smurf 22 

The mathematically rigorous feature of any FIN is the exact recognition of any 
pattern it has been trained. However, the training without DTT ( 0=l ) and with 
window 4=n  gives 12 errors, whereas 8=n  gives 8 errors. This means the 
ambiguities in the training data when two identical patterns correspond to different 
classes: ji ZZ = , )()( ji ZcZc ≠ , ji ≠ . Such ambiguities in the raw signal-1 can be 

eliminated by DTT. The results of the training and recognition are given in Tab. 2 
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Table 2. Feature extraction and intrusion detection in signal-1 

window 
size 

DTT
level 

cells  
in FIN 

minimal 
distance 

entropy 
of FIN 

index 
of FIN 

test
errors 

false 
alarms 

missed 
intrusions 

4 1 150 4.7E-4 5.5 6.7 3 3 0 
 2 170 5.4E-4 6.4 6.7 1 1 0 
8 1 175 2.1E-3 5.4 5.3 0 0 0
 2 192 8.3E-4 6.1 6.3 0 0 0 
 3 204 2.7E-4 6.8 7.5 52 50 2 
16 0 185 1.3E-3 >E10 5.9 5 5 0 
 1 210 1.6E-3 6.6 5.8 1 0 1 
 2 238 3.6E-4 7.2 7.4 27 26 1 
 3 230 3.9E-4 6.6 7.3 18 14 4 
 4 218 3.3E-4 6.4 7.4 3 3 0 

Fig. 3. DTT of signal-1 

Fig. 4. Cells of the best FIN for signal-2 (gray "0" – normal, black "+" – intrusion) 

where minimal distance Ih  is computed between the normal cells with 0=c  and the 

intrusion cells 0>c , whereas the test errors (false alarms and missed intrusions) 
occur only on the untrained counts (## 401-510). The best FIN2, according to both 
the Renyi entropy and index of inseparability, has been obtained for 8=n , 1=l (see 
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Table 3. Feature extraction from signal-2 

window 
size 

DTT
level 

cells 
in FIN 

minimal 
distance 

entropy 
of FIN 

index 
of FIN 

128 1 16518 1.6E-7 11.5 14.5 
 2 37460 1.5E-7 >E10 15.4 

3 16137 1.2E-6 10.8 12.5 
 4 38238 1.1E-6 >E10 13.4 
 5 42998 1.2E-6 >E10 13.5 
 6 42905 1.7E-6 198.9 13.1 
 7 42054 8.1E-7 112.7 13.8 

the selected row in Tab. 2). The signal-1 after the corresponding DTT processing is 
shown in Fig. 3. 

Consider the full signal-2 with 51608=SN counts (i.e. 27 hours of network 

traffic) and all 31 types of intrusions. In this case, 744min =n . Thus, 

}128,64,32,16,8,4{=n . The training results are best for 128=n  and they are 

given in Tab. 3. The best FIN2 has been obtained for 128=n , 3=l (selected row in 
Tab. 3). This feature extraction reduces 51481 128-dimensional training patterns to 
16137 cells of three-dimensional FIN (i.e. by 136 times), which is shown in Fig. 4. 

5   Discussion 

The developed mathematical models guarantee, e.g., that the FIN in Fig. 4 recognizes 
exactly any intrusion in any fragment of 128 counts of the 51608-counts signal even if 
the fragment contains only one count of intrusion on the background of all other 
counts normal. The feature extraction by this FIN provides the compression rate near 
136 for the number of real values which are needed to store for the exact recognition. 
The training time of this FIN is about 1.5 minutes (AMD 1.5 GHz).  

Such faultless recognition of FIN with rather low training time look unobtainable 
for its main competitors like ANNs in the field of intelligent signal processing. For 
example, a comparison in [13] shows that a FIN needs just 21 runs (about 20 seconds) 
to determine its optimal parameters where an ANN trained by the error back 
propagation needs 1750 runs (about 24 hours!) for the same purpose still without any 
guarantee that, say, a huge number of hidden neurons may not minimize the obtained 
errors of the ANN.  

The mathematically rigorous feature of FIN is the exact recognition of any pattern 
it has been trained. This feature allows using FIN to disclose the ambiguities in any 
data, e.g., like in the task of identification of cellular automata [24]. This feature is 
beyond the capabilities of ANNs, e.g., due to irreducible training errors and the 
known effect of overtraining when the attempts to reduce the errors may lead to their 
drastic increase [13].  

The proposed index of inseparability looks more convenient than the Renyi 
entropy for FIN. Tables 2 and 3 show that the index takes quite reasonable values 
when the entropy tends to infinity though the corresponding FIN remains quite 
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capable. On the other hand, the values of the index and the entropy are quite 
comparable when the FIN appears to perform the best feature extraction.  

It is worth noting that any parameter (##1-41 of [21]) can be utilized (in Section 4) 
as a source of signal. In such task statement, the IC approach is capable to select the 
most useful parameter(s) for intrusion detection (e.g. by index of inseparability of 
FIN). The approach is especially effective over any combination of the parameters. 
For example, intrusion detection by the combination of all parameters (##1-41) was 
reported in [16].  

It is also worth noting that the proposed approach has nothing common with a 
statistical analysis technique. Moreover, it is well-known that statistical methods (e.g. 
Markov chains, Bayesian networks etc.) are too slow and inaccurate to cope with real-
world signals. For example, our comparison of image recognition in [25] shows that 
the IC works 10 time faster and more accurate than conventional statistics. No wonder 
that more and more of modern approaches to signal processing are based on wavelet 
analysis, where the dyadic DTT (Section 2.3) is also a wavelet-type transform for 
signal analysis [26], [27].  

Hardware implementation of the developed approach can be provided by two 
steps: 1) its hardware emulation on digital signal processor (DSP) of super Harvard 
architecture (SHARC) of new TigerSHARC family (which is capable to cope with 
floating point operations) and 2) modification of the hardware emulator to a proper 
immunochip. At the first step, such hardware emulator can be coupled with a network 
router and thus tested and adjusted using data of real traffic.  

6   Conclusion 

The presented IC approach of computational intelligence [15] is based essentially on 
the mathematical models of information processing by proteins and immune networks 
[3]. It is worth highlighting that the models have already appeared to be useful also in 
such fields as biomolecular computing [9], [25] and brain research [10], [11], [12].  

On such background, the mathematical model of FIN with apoptosis and 
immunization controlled by cytokines [22] represents the key model of the IC 
approach to intelligent signal processing and intrusion detection [17]. This means that 
the other models reported here (DTT, SVD, Renyi entropy) are not so critical for 
feature extraction and pattern recognition since they were utilized just to provide a 
kind of convenient zero-approach ("innate immunity" of FIN – see Section 2.1) to be 
optimized then by FIN using apoptosis and immunization.  

For example, any set of fixed-length fragments of unprocessed signal can be 
considered as the points of FIN (Section 2.1) without any preprocessing, e.g., by 
methods of DTT, SVD, statistics, Fourier, wavelets etc. Then the reduced set of points 
after apoptosis and immunization can represent the feature extraction by FIN and the 
quality of such FIN can be estimated by the index of inseparability and thus compared 
with other FINs (e.g., those obtained by a preprocessing of the signal).  

On the other hand, let us note once again that the SVD (Section 2.2) can model the 
binding energy between two proteins [3], whereas the dyadic DTT (Section 2.3) can 
model an immune-type antigen processing [14], [27]. 
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Last but not least, the results of numerical experiments reported in [13], [16] 
suggest that the speed and accuracy of the IC approach is probably unobtainable for 
other robust methods of computational intelligence (in particular, neurocomputing 
and evolutionary algorithms). These advances of the IC approach together with its 
biological nature probably means a further step toward placing more of the intelligent 
functions on the chip. 
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Abstract. Local computer networks at major universities are routinely
plagued by self-replicating malicious software. Due to the intensive
exchange of data and information within the network, when modern
viruses, worms and malicious software are introduced they propagate
very quickly, leaving little or no time for human intervention. Such
environments are ideal for the implementation of the automatic IDS
described herein. It employs the Dynamic Code Analyzer (DCA) that
detects malicious software during run time by monitoring system calls
invoked by individual processes and detecting subsequences (patterns)
of system calls indicative of attempted self-replication. A similar ap-
proach, also utilizing system calls, is developed for the detection of
network worms. Both techniques have the potential for detecting pre-
viously unknown malicious software and significantly reducing computer
resource utilization. Unfortunately, in comparison with traditional sig-
nature based antivirus software, both approaches have a much higher
rate of false alarms. To address this shortcoming the authors propose a
method to search for evidence of the alarm propagation within the net-
work. This is achieved by aggregating alarms from individual hosts at
a server where these alarms can be correlated, resulting in a highly ac-
curate detection capability. Such a system, implementing the presented
technology, and capable of significantly reducing the downtime of net-
worked computers owned by students and faculty, is being implemented
at the computer network at the Kazakh National University.

Keywords: decision-making under uncertainty, utility, possibility the-
ory, inclusion index, comonotone fuzzy sets, Choquet integral.

1 Background

The first Intrusion Detection System (IDS) utilizing system calls was proposed
in [5]. Today, these systems utilize two main approaches, signature-based and
anomaly-based detection. Both of these approaches use descriptions of known
attacks expressed in terms of system calls. Although signature-based systems can
provide high level of accuracy, they fail to detect previously unknown attacks
and rely on an ever-growing database. Anomaly detection systems utilize models
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of normal behavior of legitimate processes. These systems check the consistency
between the invoked system calls and the profile of normality for a given process
and have the potential to detect unknown attacks. The main drawback with
these systems lies in the fact that they frequently suffer from a high rate of false
positives. The feasibility of anomaly detection based solely on system calls is
shown in [5,3,10]. The efficiency of this approach can be enhanced further by the
analysis of system call attributes [9,8,11,2,13,7]. The signature-based IDS could
be best exemplified by [1,6].

This research attempts to provide a solution for anomaly-based IDSs that are
impractical due to a high rate of false positives. In our view, the limited success
of known research aimed at the alleviation of this problem [3,10,11,13] can be
traced to the fact that research was primarily aimed at improving the accuracy of
normality models rather than achieving a higher level of confidence in classifying
the anomaly itself. The two contributions of this paper are as follows:

a). A novel host-level anomaly detection mechanism is proposed.
b). We declare a unique but rather simple idea called the anomaly propaga-

tion principle, that is suggested as the basis for establishing, with a high degree
of confidence, whether or not, a detected anomaly is a manifestation of an in-
formation attack.

In the anomaly detection mechanism we utilize non-stationary Markov mod-
els. While shell codes (in buffer overflow attack) may use only 50-60 system calls
that would certainly be concealed in a histogram, Markov models are clearly
preferable to other order-insensitive techniques (such us frequency histograms)
used to model normality profiles [5,10]. However, we deviate from the common
assumption that the source (application or service) is a stationary stochastic
process.

2 Dynamic Code Analyzer

Most information attacks are carried out via the Internet through the transmis-
sion of files that contain the code of a computer virus or worm. Upon receipt,
the target computer executes the malicious code resulting in the propagation of
the virus or worm and the delivery of its potentially destructive payload. Self-
replication, which is uncommon in legitimate programs, is vital to the spread of
computer viruses and worms.

As with any function, self-replication is programmed and the sequence of
operations is present in the computer code of the virus. The implementation
of the self-replication function is not unique and there are several sequences
of operations that can perform this task. Moreover, it is expected that these
sequences are dispersed throughout the entire body of the code and cannot be
detected as an explicit pattern. However, self-replication can only be achieved
using a finite number of methods. Consequently, developers of new malicious
software are forced to utilizing the same self-replication techniques repeatedly.
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A novel virus detection technology based on these principles, known as the
detection of the gene of self-replication (GSR), is presented in [9]. Detection is
conducted at run-time during normal code execution under regular conditions by
monitoring the behavior of every process with regards to the operating systems
system calls, their input and output arguments and the result of their execu-
tion. Unlike existing anti-virus software, this methodology facilitates proactive
protection from both known and previously unknown attacks.

A computers operation is facilitated by an operating system, which abstracts
details of the hardware from application software. Programs interface with the
operating system through the Kernel Application Programming Interface via
system calls. System calls play a major role in characterizing the behavior of
both malicious and legitimate computer programs. Unlike a computer program,
system calls provide unambiguous information on what the computer actually
does. Since self-replication is common and fundamental property of the most
viruses, the search for malicious behavior can be narrowed down to the search
for self-replication activity, or the GSR, in the sequences of system calls. This
concept is generic in its nature; therefore, it can be applied to any computer
system without necessarily binding it to a specific operating system.

The GSR is viewed as a specific sequence of commands passed to the com-
puter operating system by program code that causes this code to replicate itself
through the system or networks. Computer viruses can employ different software
APIs, from hijacking a simple email client to interfacing with very complex OSs.
Nevertheless, the most sophisticated and versatile viruses are still implemented
in assembly language (ASM) and assembled into executable files. Since computer
viruses are expected to self-replicate, and this task cannot be accomplished with-
out interfacing the operating system, monitoring and analyzing system calls to
certain OS APIs provides the means for detecting this common feature of mali-
cious software.

Virtually every process produces system calls, however, they can easily be
differentiated for every process and thread. In all cases, system calls represent
a direct timeline sequence of events, which can be analyzed during execution.
The GSR is contained within the sequence produced by a malicious process,
and possibly dispersed throughout that sequence. Since none of the system calls
alone can be considered malicious, only the particular sub-sequences of calls can
form the GSR. The GSR is best described using the concept of building blocks,
where each block performs a part of the chosen self-replication procedure. Any
piece of software for a variety of legitimate reasons can individually perform most
of the building blocks involved in malicious self-replication activity. Only when
integrated into larger structures and based on their inter-functional relationships,
are these building blocks indicative of attempts to self-replicate [9].

The GSR can be composed of such blocks in various ways. Therefore, its struc-
ture can be viewed as a regular sentence being built up by concatenating phrases,
where phrases are built up by concatenating words, and words are built up by
concatenating characters. One of the major reasons for applying such a syntactic
approach to describing the GSR is to facilitate the recognition of sub-patterns.
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This implies the recognition of smaller building blocks first, establishing their rel-
evance and contribution to the replication, and then considering the next sub-
pattern. This process is consistent with text analysis that includes recognizing
characters first, and then concatenating them into words, running a spell checker
on an entire word to check for mistakes, and then continuing to concatenate words
into phrases and sentences checking for correct grammar and punctuation. The
syntactic description of the GSR provides a capability for describing and detect-
ing large sets of complex patterns by using small subsets of simple pattern primi-
tives. It is also possible to apply such a description any number of times to express
the basic structures of a number of gene mutations in a very compact way. The
relationship between different blocks of the GSR and system calls could be very
complex and can be accurately established based solely on system calls attributes.
The number of attributes that make up the basic building blocks is approximately
40. Some of these attributes indicate direct relations among different system calls
that could be utilized to bind system calls together to define blocks and bind blocks
to establish the particular mutation of the GSR [9].
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Fig. 1. GSR Detection on the Process Level

Figure 1,2 illustrates the GSR detection processes. Every system call is di-
rected to the Replication Detector, where it is analyzed using a complete range
of different detection and filtration mechanisms. Following the concept of de-
coupling of the GSR definition, the detection process is also highly decoupled
to ensure compatibility and to reduce false detections. Just like the GSR is
formed from many different building blocks, the detection mechanism observes
and makes decisions regarding every block separately, until it finally reaches the
top of the GSR pyramid structure and triggers the alarm mechanism. As soon
as a system call is detected, the History Tracer communicates with the data-
base, where the GSR structure is defined, to determine if this system call can
be combined with any other lower level blocks to form a larger structure. When
such a combination is possible, the Combiner takes two chosen lower level blocks
and forms a single upper level block so that its inputs are identical to the inputs
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Fig. 2. GSR Detection on the Computer Level

of the Lower Block taken from the history, and the outputs are inherited from
the newly detected Lower Block. When the new Upper Block is finally formed,
the history is updated and the algorithm repeats itself, but does so cognizant of
this newly created block. At every repetition, the detection is taking place at a
higher level, as though climbing up the pyramidal structure.

As per Figure 2, the DCA detects and suspends a process that almost com-
pletes a GSR sequence, allowing the user to resume or terminate the process.
Although application of the DCA may not prevent damage caused by mali-
cious code to a particular individual computer, it allows for containment of the
virus within the computer, preventing it from spreading over the network and
creating a costly computer epidemic. It is equally important that the DCA is
continuously running in the background and consumes less than 5% of a mod-
ern PCs resources. A prototype DCA system was successfully developed and
implemented.

3 Dealing with Computer Worms

Unlike a virus that copies itself to a new file or appends itself to some victim file
on local host, a worm does not have to create any new files or access existing
files locally. Hence, worms may avoid leaving extensive traces of file manipulation
activity in the system call domain. However, in order to perform self-replication
on the network level, the worm must send a shell code to the victim process,
which will execute the shell code, invoking system calls, what will certainly be
reflected in the process behavior and could be detected as an anomaly.
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Attack packets of a worm consist of an exploit vector followed by a shell
code being a propagation engine. Modern worms could be multi-exploit and
packet polymorphic, however they are expected to utilize the same propagation
engine for every instance of the attack. The biggest collection of exploit payloads
(www.metasploit.com) presents only a few propagation engines including: bind
shell, reverse shell thread injection, and remote call of upload procedure. For
instance, for bind shell, a propagation engine runs the command shell having
the input bound to a socket associated with a port created by the compromised
process. Worm developers usually employ the same propagation engine in their
new worms. As a result, the same worm functionality would be carried out at
every instance of an attack. One can see the advantage of tracing system calls
instead of the packet contents. While an adversary may write a polymorphic
worm, whose attack packet payload may be different from instance to instance
(causing significant changes in the worms binary signature), every attack would
utilize a functionally-invariant propagation engine, thus leading to the utilization
of the same system calls. In this sense, a worm (similar to a virus), exhibits its
gene of self-replication defined in the system call domain, the only difference is
that the GSR signature of a worm offers very little information for signature
matching.

To address this specificity of computer worms, the following approach to worm
detection, different from the DCA was suggested in [12]. As a worm propagates,
it alters the system call profile of the victim process. This altered profile could
be detected as an anomaly at the host level. Every copy of the worm would carry
out the same activity resulting in similar system calls traces, and similar anom-
alies that could be detected in the victim processes of other hosts. Therefore,
the presence of self-propagation of a worm could be revealed through abnormal
sequences of system calls occurring at different hosts on the network. We call
this phenomenon the anomaly propagation. To distinguish the anomaly propa-
gation from a set of coincidences (meaningless occurrences of the same anomaly
at different nodes of the network), one has to analyze the connectivity pattern of
the nodes. If the anomaly propagation pattern is consistent with the connectiv-
ity pattern between hosts, we claim that anomaly propagation takes place due
to malicious activity. On the other hand, if anomaly propagation is inconsistent
with the connectivity pattern, we declare a false positive. It could be seen that
anomaly detection is the crucial component of the described approach.

Applications and services utilize high-level functions intended to solve various
tasks. When an application executes several correlated tasks or a group of tasks
that affect each other, it operates in one of its distinct phases (distinguished by
functionality) and achieves different goals. These phases have their own realiza-
tions with respect to system calls and inevitably have different unconditional,
as well as conditional, statistical distributions of system calls. Therefore, the
system call profile for an entire application or service should be modeled as a
non-stationary stochastic process.

Operation phases consist of many system calls and implement some strictly pre-
scribed high-level tasks. This consideration assumes the source to be stationary
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during each operation phase. Since properties of the underlying stochastic process
appear to be invariant over an operationphase, one can model individual operation
phases by Markov chains. Therefore, the entire process or application would be
modeled by a set of Markov models corresponding to particular operation phases.
In this context, the sequence of system calls is considered anomalous if it is not
likely to happen according to the specific Markov model (corresponding to a spe-
cific operation phase). Hence, the anomaly score can be chosen as the predicted
performance characteristic of the Markov model over the observed sequence of
system calls and quantified by a chi-square likelihood function of the observed se-
quence of a certain window. If the chi-square likelihood function exceeds a specified
threshold, we declare the observed sequence to be an anomaly.
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Fig. 3. Bifurcation point detection

Prior to deriving Markov models, operation phases must be distinguished au-
tomatically in an unsupervised fashion. This could be done by applying a tech-
nique that would determine bifurcation points (moments of dramatic change in
process properties) within the given sequence of observations (system calls). These
bifurcation points would certainly correspond to the moments of operation phase
switching. One of the most efficient techniques for detecting bifurcation points is
the moving omnibus method that is a simple extension of the classical omnibus
method utilizing Pearsons χ2 hypothesis test [4]. Figure 3 above illustrates the
application of the approach [4] for the detection of the cut-off point between the
browsing and downloading phases of operation of the Internet Explorer (p-value
is a parameter quantifying the appropriate significance analysis).

Local stationary segments of the observed system call sequence are to be used
to derive stationary Markov models corresponding to operation phases of the
most common processes. To achieve superior consistency the application of high
order Markov models is suggested. The methods for defining the order of Markov
models for the given observation are described in [4].
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During the testing regime, the phase of operation of the application in ques-
tion is recognized in real time, and the corresponding Markov model is applied.
The problem of matching current outcomes to a set of models was addressed
in several publications (e.g., Stolfo [10]). A simple approach utilizing different
models from the set and selecting the most appropriate one, according to a
certain distance metric, was employed. It implied that if the current Markov
model is not consistent with the observed system calls according to some per-
formance metric (likelihood ratio), the system searches for the model having the
best performance. To avoid undesired frequent model change we introduced a
constraint on the minimum number of system calls before model switching is
allowed. Figure 4 below illustrates the concept of the local anomaly detection.
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Fig. 4. Anomaly detection on a multi-phase process

4 Server-Level Analysis of Local Alarms

Conventional anti-virus tools, available to every user, detect malicious software
by matching a binary signature of the process in question to the binary signatures
of known viruses and worms stored in the database. While this approach is very
dependable, it has major drawbacks: it relies on an ever-growing database; re-
quires periodic updates; consumes ever-growing share of computer resources; and
is incapable of detecting previously unknown malicious codes. At the host level,
implementing the techniques described above are free of these drawbacks (at
least to some extent), however, they typically have a high rate of false positives
that significantly limits their practicality. The utilization of the anomaly/alarm
propagation concept provides a realistic opportunity for a significant reduction
of the false alarm rate resulting in a new generation of IDSs operating at the
server level and capable of such advanced features as the detection of new viruses
and worms and the detection of distributed and evolving attacks.
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Figure 5 below illustrates the principle of operation of a network security
system operating on the server level where anomalies and alarms detected in
the individual hosts are reported to the server level, and are correlated with the
network topology and connectivity history.
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Fig. 5. IDS operation principle

Anomaly propagation analysis requires distinguishing similar or equivalent
abnormalities indicative of the same propagation mechanism. Anomalous seg-
ments of system calls detected on the hosts are separated into thread specific
sequences, reported to the server, and provided with a time stamp and source
host ID. Detectors must then split abnormal segments into thread specific se-
quences since a worm exploit payload is executed by one thread.

The collection server compiles the anomalies into different groups containing
equivalent system call sequences. The distance between two anomalies is deter-
mined using the following equation:

d(S1, S2) = 1− max (|C(S1, S2)| | (|Cm| > k))
min(|S1|, |S2|)

(1)

where |C(S1, S2)| - length of common subsequence of anomalous strings and
Cm - minimal common factor of the compact set of factors representing the
subsequence. The numerator specifies the value of k as the minimum length
of the common segments of two sequences, (S1, S2), which are declared to be
equivalent.
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Initially, we used just the length of the longest common segment, but even-
tually we realized that this definition would be significant only for propagation
engines having a linear execution path. If a propagation code has branches in the
execution path, then the common factor may be fragmented and some segments
may diverge, causing two anomalies to be recorded as part of different attack
instances. The distance (1) tolerates the existence of relatively small call execu-
tion branches within the matching segments. In fact, metric (1) is not really a
distance, since it does not satisfy triangular inequality, however, it seems to be
a suitable measure of anomaly similarity.

An anomaly equivalence measure can be defined with respect to distance (1)
as well as another metric:

d(S1, S2) = 1− max (|C(S1, S2)| | (|Cm| > k))
max(|S1|, |S2|)

(2)

One can see that (1) and (2) compute the percentage of the non-common part
for shorter and longer system call strings respectively. Distances (1) and (2)
provide the basis for the establishment of specific groups of equivalent anomalies
as defined in terms of system calls.

During the execution, a reported anomalous string (sequence) would first be
checked against the existing groups and then be added to the appropriate group
as an equivalent to the anomalies contained in the group. Formally, anomaly
S is added to the group G that contains representing string R if the following
equivalency relation ϕ holds:

SϕSi ∈ G iff (d(S,R) < τ1)&
(
d(S,R) < τ2

)
(3)

One can observe that the equivalency relationship (3) is reflexive, commutative,
and transitive for group members. Hence, group members are formally equivalent
according to the relationship (3).

If none of the groups is equivalent to the new anomaly, the system will continue
comparing the anomaly with the anomalies already contained in the pool to find
a candidate for a new group. We should point out that an anomaly cannot
be added to the group if the group already contains an anomaly reported by
the same host. To avoid pool inflation, close anomalies from the same host are
represented by the single longest anomaly reported by the host.

The system tracks group size (number of members) and if the size exceeds a
certain threshold, the system analyzes the pattern of propagation of anomalies
in the group to expose the replication. Anomaly propagation is considered to
have a replication pattern if it is consistent with the connectivity graph G in
both topological and time sense. In other words, if an anomaly is replicating, it
must propagate according to the following simple rules:

1. Each new instance of anomaly (except the first one) must occur in the
process, which has recently been created by another suspicious process (which
was already reported as an anomaly).

2. The time elapsed from the last interaction to the current anomaly occur-
rence must be less than the prescribed threshold (active window).
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For the multipartite attack (coordinated multi source malicious activity), the
first rule must allow for several sources simultaneously.

The system computes the replication score in the following way: max(|V ′|)
/
|V|,

where V ′ is a node set of the graph G′(E′, V ′) being a connected sub-graph of
the connectivity graph G. The score is compared to the threshold to decide if
anomaly propagation is indeed a replication-related activity. The score takes
into account the relative number of instances matched to replication pattern
and shows the extent to which the alarm propagation is consistent with the
replication activity.

5 The Implementation Aspects and Results

Based on the models presented in the previous sections, the authors have imple-
mented an IDS operating in a MS Windows environment. The IDS consists of a
client part and server part. Client agents, installed on every host monitor system
calls invoked by selected processes to reveal anomalies. The server application
receives abnormal sequences from the clients and performs anomaly propagation
analysis. In order to reduce the overhead, the IDS client does not monitor and
analyze system calls of the selected process before the process interacts with a
remote host. After detecting such an interaction, the IDS client analyzes system
calls to establish the fact of normal process operation or abnormal activity. Cur-
rently, we use the WinPCAP library to detect 3-way handshake of a TCP session.
It should be pointed out that the system currently analyzes only SYN packets
captured and reported by the WinPCAP driver working in kernel-level packet
filtering mode to minimize the overhead for the user-level packet processing.

The authors do realize that the anomaly propagation pattern could be specifi-
cally factorized if the worm were to cyclically use a different payload at different
generation steps. To address this problem we propose extending propagation
analysis by combining graphs and then by further analyzing the resultant gen-
eral graph. This graph will have nodes belonging to one of the combined groups.
Thus, if the worm propagates using different exploit payloads, the combined
graph will preserve propagation structure, demonstrating alarm propagation that
may reflect several different anomalies.

The presented IDS technology has been tested with respect to computer
worm attacks. Experiments were performed in a network testbed using 200
virtual machines with vulnerable versions of Windows XP. We experimented
with the bind shell propagation engine that is common for a class of worms
including: W32.Sasser, W32.Blaster, W32.Duster, W32.Welchia, W32.Reatle,
W32.Cycle, etc.

For our experiment we selected the W32.Welchia worm as a class member,
which according to Symantec.com, is notable for its high geographical distri-
bution and traffic load. In order to use this worm in our testbed, we had to
reverse-engineer and modify the original worm to make if more effective.In or-
der to make its propagation faster we removed the ISS exploit, date checking, and
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Blaster worm subverting engine. Additionally, we restricted the victim scan space.
The modified version exploits the RPC DCOM vulnerability and only scans vul-
nerable and reachable hosts, resulting in an increased propagation rate.

First, we checked the predicting capability of non-stationary models versus sta-
tionary models for several legitimate processes (services) including: Svchost (RPC
DCOM), Internet Explorer, LSASS, CCAPP, etc. Model generation from the sys-
tem call sequences was performed offline using MATLAB. In all cases the non-
stationary models showed better performance than the stationary models. Fig-
ure 6 below depicts system call prediction performance for Svchost (RPC DCOM)
process based on the stationary Markov model versus the non-stationary model.
The non-stationary model contains two second order Markov chains. The graph
shows the chi-square log-likelihood ratio statistic that formally reflects the predic-
tion performance (the lower the statistic, the better the prediction). Examining
the curves one can see that the non-stationary Markov model (solid line) totally
outperforms the stationary model (dashed line) in predicting system calls.

Fig. 6. Performance prediction of Svchost based on stationary and non-stationary
Markov models

In the second experiment, we launched the W32.Welchia worm 20 times with
arbitrarily chosen attack deployment nodes. We set the threshold for the repli-
cation score to 0.75 and the minimum size of the group to 5 hosts. In Figure 7
the solid line (left axis) shows the number of infected hosts before anomaly prop-
agation detection. The dashed line (right axis) represents the mean distance
between the string of the group that raised an alarm, and the members of that
group. In every attack instance the system detected anomaly propagation af-
ter 5 to 13 host infections and on average after 8 host infections. The mean
distance fluctuates from 0.05 to 0.18, demonstrating high member similarity.
We did not observe any false positives (group spawned by non-worm sequences
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Fig. 7. Number of infected hosts and anomaly group score

being attributed to propagation), demonstrating the high performance of
this IDS.

Fig. 8. Attack detection at the arbitrary chosen host

For the arbitrary chosen infected host #14, Figure 8 shows the likelihood
function (LF) recorded during the attack. One can see that the attack is detected
reliably (wide spike) and the segment having a LF higher than 100 was treated
as an anomaly and reported to the server.

The authors are aware of the possibility of obstructing propagation detection
through random insertion of dummy system calls into the propagation engine
and will address this issue in the future research.
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Abstract. This article reports on a model of a host-based intrusion detection 
system. Using a model of a state machine possible mechanisms of security vio-
lations in a computer system are analyzed. Thereafter principles are suggested 
for building an analysis module based on a model of dynamic monitoring of 
system statuses. The article concludes with a number of approaches for devel-
oping a data acquisition module for a host-based intrusion detection system. 

Keywords: intrusion detection, host-based intrusion detection system, attack, 
API Intercept. 

1   Introduction 

Talking about host-based IDS we should focus on its two main modules: data collec-
tion module and analysis module. Putting together they define features of whole IDS. 
In the first chapter we discuss analysis module. Nice review of previous works which 
are devoted to design of the analysis module can be found in [1], [2]. Work [3] is de-
voted to “practical” and not just not to ”scientific” approach to IDS design. The pro-
posed in this article model of an IDS determines an indefinite-measure multitude of 
intrusions and a denumerable set of their description models. The set of intrusion 
description models is used by the evaluation module and determines the likelihood of 
undesired actions the system is capable of detecting. The multitude of attacks not 
described by models determines the completeness of detection by the IDS linked to 
the ability of detecting security violations. Proposed approach seems us promising for 
design of practical host-based IDS. In the second chapter discuss design principles of 
design of host-based data collection module. Base works related to building host-
based IDS data collection module can be found in [4], [5] for Windows and in [6] for 
Linux. We systematize offered methods of design and analyze their characteristics.  

2   Development of the Analysis Module  

The basic approach used for describing the system model for examining its security in 
the course of engineering is a system status analysis. This article offers the description 
of an approach to status security analysis aimed at detecting information security 
violations in the course of computer system operation. The online system status  
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monitoring subsystem should detect system transfers to unsafe statuses due to invalid 
operations performed by the user in the system, or intrusions into the system.  

Hence, the task of online system status security monitoring consists in:  

1) detecting the statuses that contradict to the security policy determined in the system 
i.e. unsafe statuses; 
2) identifying the reasons that caused an unsafe status of the system; 
3) evaluating the security of the system being intruded. 

The approach proposed should take into account security system violations caused 
by both incompliance with the security policy and attacks on the system resulting in 
the need to describe two models. However both models need to be described based on 
unified mathematical formalism which will provide for subsequent merger of the 
models. The above formalism in this paper presented as finite state machine describ-
ing the behavior of a system subject.   

2.1   System Model Identifying Security Policy Violations 

Let us introduce definitions of the concepts to be used in further reasoning. {S} – a 
multitude of subjects; {O} – a multitude of objects; {Op} – a multitude of operations; 
{Prg} – a multitude of services used by the subject (programs or program interfaces). 
The introduction of this multitude into the system model description is due to the fact 
that system subject operations over objects are implemented using services. Hence the 
matrix of subject to object  access in the system may be defined as follows:  M’ (s, 
prg, o) – access matrix for programs used on behalf of subjects to perform operations 
with system objects. 

Then machine A = {σ, t, Out, σ0, δ, λ} which represents the user performance with 
respect to the security policy determined in the system, may be described as follows: 

σ = {op1(prog1, 01), …, opi(progi, 0i)} – a machine state describing operations per-
formed by a system subject over objects; the multitude of statuses is partially rank-
ordered. 

t ∈ Op(prgi, oj) – controlling machine symbols  corresponding to the operations 
performed by the subject over system objects using programs. 

A safe status is a status describing operations performed by the subject that do not 
contradict to the security policy. Thus the status security evaluation describes the 
machine exit as Out = {Sec, UnSec}. The machine completes its operation if it goes 
to an unsafe status. Then the transfer function δ may be described as follows: 

∀ t = opi ∃ opi(progi, 0i) ∈ σi = t → σi+1 = σi

∀ t = opi !∃ opi(progi, 0i) ∈ σi = t → σi+1 = σi ∪ t.

The exit function of machine λ may be presented as follows: 

∀ t = opi (opi(progi, 0i) ∈ σi) ∨ (opi(progi, 0i) ∈ M’ (s, prg, o)) → Out = Sec 
∀ t = opi (opi(progi, 0i) ∈ σi) ∨ (opi(progi, 0i) ∉ M’ (s, prg, o)) → Out = UnSec 
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2.2   Intrusion Detection Model 

After describing a model for the check of system functional security for compliance 
with the security policy let us discuss a model describing likely system attacks. Sys-

tem attacks are identified with the use of attack signatures 1{ }M
m mSgt = . The multitude of 

signatures describing attacks may be grouped into submultitudes according to their 
PROPERTY. The PROPERTY reflects the multitude of attack signatures into multi-
tude prpn n ∈ 1: N that describes the attack objectives. Each element of multitude prpn

reflects the objectives of an attack involving signatures. Multitude 1{ }N
n nprp =  is par-

tially rank-ordered. 
It is important that the intruder performing intrusion advances in its actions by 

means of launching (successfully or not) various attacks on the system.  Then the 
multitude of signatures may be rank-ordered in accordance with the intrusion stage as 

follows: 1
1

1
1 1{ } ...{ }k

k

M Mk
i ii iSgt Sgt= =  while Mm

K

j

j =
=1

.

At that, the scenarios of security violation (intrusion) may be described as Scen  =  
(Sgt0, Sgt1, …, Sgtk) k  M provided that:  

1) ∀i, j ∈ 1:k, i j →Sgti  Sgtj

2) ∀i, j ∈ 1:k, i  j → prp(Sgti) ≤ prp (Sgtj)

The machine describing system security violations may be introduced using the 
following definitions: 

σ = {Sgtm} – machine statuses described by a signature corresponding to the most 
advanced intrusion phase reached by the intruder. 

t ∈ Sgti – machine control symbols. 
prp(σi) for the current machine status – machine exit 
σ0 ∈ σ – initial status in which the subject starts interacting with the system. 
Machine transfer function δ may be described as follows: 

∀ t = Sgtj ∃ Sgti ∈ σi : prp (Sgtj) ≤ prp(Sgti)→ σi+1 = σi

∀ t = Sgtj !∃ Sgti ∈ σi : prp (Sgtj) ≤ prp(Sgti), → σi+1 = σi ∪ Sgti

Exit function λ is described as follows: 

∀t = Sgti    Out = prp (δ (σi, t)). 

2.3   Unified Model 

The components describing the system model may be described using a unified struc-
ture. In the above structure machine statuses will be described as follows: σ = 
{{op1(prog1, 01), …, opi(progi, 0i)}, Sgtm(Scenl)}. The entry of the unified machine is 
a user-performed operation using a service, or a user-performed system attack using a 
service. Hence, t ∈ (Op(prgi, oj) ∨ Sgtm) – machine control symbols. Transfer function 
δ of the unified machine is described as follows: 

∀ t = Sgtj ∃Sgti ∈ σi : prp (Sgtj) ≤ prp(Sgti)→ σi+1 = σi
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∀ t = Sgtj !∃Sgti ∈ σi : prp (Sgtj) ≤ prp(Sgti)→ σi+1 = σi ∪ Sgti

∀ t = opi ∃opi(progi, 0i) ∈ σi = t → σi+1 = σi

∀ t = opi    !∃opi(progi, 0i) ∈ σi = t → σi+1 = σi ∪ t.

The machine exit is the unified machine status profile. In accordance with the 
above definitions the statuses may be: safe, unsafe and attack condition statuses. The 
exit function of the unified machine λ is described as follows: 

∀t = Sgti Out = prp (δ (σi, t)) 
∀ t = opi (opi(progi, 0i) ∈ σi) ∨ (opi(progi, 0i) ∈ M’ (s, prg, o)) → Out = Sec 
∀ t = opi (opi(progi, 0i) ∈ σi) ∨ (opi(progi, 0i) ∉ M’ (s, prg, o)) → Out = UnSec 

Therefore, this article offers a machine model providing for online monitoring of 
system status security. Based on online monitoring of system status security various 
security violations of the computer system may be detected.  

3   Features of Development of the Data Acquisition Module 

The attacks and intrusions themselves are commonly described as in lower level 
terms. The bridging of this gap should be facilitated by an adequate data acquisition 
method with an option to transform the data obtained to higher presentation levels.   

Even though for data acquisition in host-based IDS it is possible to use standard 
tools of operating system audits it is advisable to customize the data acquisition mod-
ules due to the fact that standard audit tools frequently acquire information useless for 
detecting system security violations while vital information is often missing.  Thus, to 
provide for efficacious tracking of intrusions it is necessary to  select a system presen-
tation level which would be most appropriate for acquiring the initial data. The level 
selection will be determined by two contradictory factors – the ease of information 
acquisition and the unambiguous decision-making process.  

Function ( ) { }k mLevel M LevMod=  provides for the return of the level multitude of 

operation and object descriptions used to describe intrusion model j. Let us assume 
that a data acquisition module gathers data at level LevData. Let us designate the 
presentation of system objects and operations at the level of the data acquisition mod-
ule as OLevData, RLevData, and at the model level as  OLevMod, RLevMod. Thereafter the 
proposed system will make it possible to describe the basic properties of the IDS 
determined by the data acquisition module. 

1) Validity of the intrusion detection system. The data acquisition module should 
run at a minimum level of operation and object presentation present in a multitude of 
models describing attacks min(min( ( )))j jM LevData LevMod M ∀ ≤ . In the event that 

the above condition is not met the data acquisition module will not be capable of 
transferring complete information to the system event analysis module, and the opera-
tion of the IDS will be invalid. 

2) Compatibility of the modules of the IDS. The data obtained by the data acquisi-
tion module of the host-based IDS should be reduced to a single format used by the 
analysis module of the intrusion detection system ! , : ( ),j LevMod LevDataM F G O F O ∀ ∃  =  

( )LevMod LevDataR G R= . The existence of single transformations F and G and their  
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complexity determine the possibility to identify objects and operations at the level of 
intrusion model presentation as well as the complexity of development.  

3) Compatibility of the IDS with the computer system. Ideally, the intrusion detec-
tion system should be transparent for the user.  
In terms of completeness of the IDS it is appropriate to use a data acquisition module 
controlling the behavior of the whole system. However, a module developed after 
such a pattern may prove inefficient because the volume of data acquired for analysis 
may be superfluous. The use of data acquired on the events in a particular subsystem 
may be appropriate from the perspective of detecting subsystem attacks which limits 
the number of models used and reduces the completeness of the intrusion detection  

Table 1. Comparison of Methods Used to Build a Data Acquisition Module for Windows OS 
Family Host-based IDS 

Comparison criteria /  

Method or tool of data acquisition 
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Efficiency 
High degree of information content - + + +/- +/- 
Ability to acquire information 
regarding all processes running 
on the system 

+ +/- - + + 

Signature method of attack detec-
tion 

- + + + - 

Method for anomaly detection +/- + + + + 
Analysis of object operations in 
the system  

+/- + + + - 

Versatility  
Applicability of a single method 
for all subsystems 

+ + - - - 

Ability to use the information 
acquired for online analysis in the 
external system  

+ + + - - 

Compatibility 
Transparency for the user (ab-
sence of shell) 

+ + + - - 

User-free information acquisition  + + + - - 
Does not require any modification 
of the environment or the software 

+ +/- +/- - + 

Protectibility 
Difficult to overcome the protec-
tion system 

- +/- + - - 
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system. Thus, a win-win option would provide for tracking the subsystem events that 
are critical for the system security. In accordance with the requirements the modifica-
tion of the software environment may impact the compatibility of the data acquisition 
module with the computer system. As a result, it is recommended to use the intrusion 
detection system without modifying the software environment or using modificationof 
environment variables. As shown above, the choice of performance level for the data 
acquisition module, in its turn, has an impact on the validity of IDS and the compati-
bility of its modules. At that, it is most appropriate to develop modules for acquisition 
of the data related to the intercept of system calls and API requests. Table 1 shows a 
comparison of the most common methods used to build a data acquisition module for 
Windows OS family host-based IDS. 

It should be noted that the values shown in the above table for different compara-
tive features with respect to the method used for building a data acquisition module 
for host-based IDS, will be typical of not only Windows OS but of other operating 
systems too. The most promising methods for building a data acquisition module 
should be the method based on the intercept of system calls (library functions), and 
the method based on the use of subsystem drivers. The use of methods based on the 
intercept of system calls is less time-consuming (while the information content is the 
same) compared to the method based on the use of subsystem drivers. However the 
use of methods based on the intercept of system calls requires strong efforts aiming at 
ensuring protectibility compared to the methods based on the use of subsystem driv-
ers. As it follows from Table 1, the methods based on the intercept of system calls 
may also suffer from problems related to the requirement regarding compatibility.  

4   Conclusion 

Thus, in this paper we try to find balance between intellectuality and usability of host-
based IDS. Our algorithm of detection is effective and expressive and can be used in 
practical IDS. Proposed model makes it possible to justify the selection of the method 
for building a data acquisition module of host-based IDS. 
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Abstract. In many practical situations, it is important to store large
amounts of data and to be able to statistically process the data. A large
part of the data is confidential, so while we welcome statistical data
processing, we do not want to reveal sensitive individual data. If we
allow researchers to ask all kinds of statistical queries, this can lead to
violation of people’s privacy. A sure-proof way to avoid these privacy
violations is to store ranges of values (e.g., between 40 and 50 for age)
instead of the actual values. This idea solves the privacy problem, but
it leads to a computational challenge: traditional statistical algorithms
need exact data, but now we only know data with interval uncertainty.
In this paper, we describe new algorithms designed for processing such
interval data.

Keywords: privacy, statistical databases, interval uncertainty, compu-
tational statistics.

1 Interval Approach to Preserving Privacy in Statistical
Databases

Need for statistical databases. In many practical situations, it is very useful to
collect large amounts of data.

For example, fromthedata thatwe collect during a census, we can extract a lot of
information about health, mortality, employment in different regions– for different
age ranges, and for people from different genders and of different ethnic groups.
By analyzing this statistics, we can reveal troubling spots and allocate (usually
limited) resources so that the help goes first to social groups that need it most.

Similarly, by gathering data about people’s health in a large medical database,
we can extract a lot of useful information on how the geographic location, age,
and gender affect a person’s health. Thus, we can make measures, which are
aimed at improving public health, more focused.

Finally, a large statistical database of purchases can help find out what peo-
ple are looking for, make shopping easier for customers and at the same time,
decrease the stores’ expenses related to storing unnecessary items.
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c© Springer-Verlag Berlin Heidelberg 2007



Interval Approach to Preserving Privacy in Statistical Databases 347

Need for privacy. Privacy is an important issue in the statistical analysis of
human-related data. For example, to check whether in a certain geographic area,
there is a gender-based discrimination, we can use the census data to check, e.g.,
whether for all people from this area who have the same level of education,
there is a correlation between salary and gender. One can think of numerous
possible questions of this type related to different sociological, political, med-
ical, economic, and other questions. From this viewpoint, it is desirable to give
researchers ability to perform whatever statistical analysis of this data that is
reasonable for their specific research.

On the other hand, we do not want to give them direct access to the raw census
data, because a large part of the census data is confidential. For example, for
most people (those who work in private sector) salary information is confidential.
Suppose that a corporation is deciding where to built a new plant and has not
yet decided between two possible areas. This corporation would benefit from
knowing the average salary of people of needed education level in these two
areas, because this information would help them estimate how much it will cost
to bring local people on board. However, since salary information is confidential,
the company should not be able to know the exact salaries of different potential
workers.

The need for privacy is also extremely important for medical experiments,
where we should be able to make statistical conclusions about, e.g., the efficiency
of a new medicine without disclosing any potentially embarrassing details from
the individual medical records.

Such databases in which the outside users have cannot access individual records
but can solicit statistical information are often called statistical databases.

Maintaining privacy is not easy. Maintaining privacy in statistical databases
is not easy. Clerks who set up policies on access to statistical databases some-
times erroneously assume that once the records are made anonymous, we have
achieved perfect privacy. Alas, the situation is not so easy: even when we keep all
the records anonymous, we can still extract confidential information by asking
appropriate questions.

Many examples of such extraction can be found in a book by D. Denning [4].
For example, suppose that we are interested in the salary of Dr. X who works for
a local company. Dr. X’s mailing address can be usually taken from the phone
book; from the company’s webpage, we can often get his photo and thus find out
his race and approximate age. Then, to determine Dr. X’s salary, all we need
is to ask what is the average salary of all people with a Ph.D. of certain age
brackets who live in a small geographical area around his actual home address –
if the area is small enough, then Dr. X will be the only person falling under all
these categories.

Even if only allow statistical information about salaries s1, . . . , sq when there
are at least a certain amount n0 people within a requested range, we will still be
able to reconstruct the exact salaries of all these people. Indeed, for example, we
can ask for the number and average salary of all the people who live on Robinson
street at houses 1 through 1001, and then we can ask the same question about
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all the people who live in houses from 1 to 1002. By comparing the two numbers,
we get the average salary of the family living at 1002 Robinson – in other words,
we gain the private information that we tried to protect.

In general, we can ask for the average
s1 + . . . + sq

q
, and for several moments

of salary (variance, third moment, etc): if we know the values vj at least q
different functions fj(s1, . . . , sq) of si, then we can, in general, reconstruct all
these values from the corresponding system of q equations with q unknowns:
f1(s1 . . . , sq) = v1, . . . , fq(s1, . . . , sq) = vq.

At first glance, moments are natural and legitimate statistical characteristics,
so researchers would be able to request them, but on the other hand, we do not
want them to be able to extract the exact up-to-cent salaries of all the folks
leaving in a certain geographical area.

What restriction should we impose on possible statistical queries that would
guarantee privacy but restrict research in the least possible way?

What is known. These are anecdotal examples of poorly designed privacy and
security, but, as we have mentioned, the problem is indeed difficult: Many seem-
ingly well-designed privacy schemes later turn out out to have unexpected pri-
vacy and security problem, and it is known that the problem of finding a privacy-
preserving scheme is, in general, NP-hard [4].

Different aspects of the problem of privacy in statistical databases, differ-
ent proposed solution to this problem, and their drawbacks, are described in
[2,4,5,6,7,10,11,15,17,18,20,21,22,24] (see also references therein).

Interval approach to privacy protection. A sure-proof way to avoid these privacy
violations is to store ranges (intervals) of values instead of the actual values. For
example, instead of keeping the exact age, we only record whether the age is
between 0 and 10, 10 and 20, 20 and 30, etc.

In this case, no matter what statistics we allow, the worst that can happen is
that the corresponding ranges will be disclosed. However, in this situation, we
do not disclose the original exact values – since these values are not stored in
the database in the first place.

2 Related Challenges and Algorithms of Computational
Statistics

Related challenges of computational statistics. This idea of storing intervals
solves the privacy problem, but it leads to a computational challenge.

Indeed, suppose that we are interested in the value of a statistical characteristic

C(x1, . . . , xn) such as population mean E =
x1 + . . . + xn

n
, (biased) population

variance V =
(x1 − E)2 + . . . + (xn − E)2

n
, covariance, correlation, etc.
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Traditional statistical algorithms for computing these characteristics assume
that we know the exact values of the samples xi, yi, etc. However, in our case,
we do not know these actual values, we only know the intervals xi = [xi, xi] of
possible values of these characteristics. Since we do not know the actual values
xi, we cannot compute the exact range of the characteristic C, we can only find
the range of this characteristic:

C(x1, . . . ,xn) def= {C(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

So, the challenge is: given the characteristic C(x1, . . . , xn) and the intervals xi,
we must compute the corresponding range.

Important comment: what are the statistical properties of these estimations?
What really interests the user is not a statistical characteristic like popula-
tion mean E, but rather the actual mean of the actual distribution – of which
the database contains only a sample. From this viewpoint, a population mean
is interesting because it is a good approximation to the actual mean: when
the sample size n increases, then with probability 1 the corresponding statistic
Cn

def= C(x1, . . . , xn) converges to the actual value c of the desired characteristics,
and the difference d(Cn, c)

def= |Cn − c| tends to 0 fast.
In the case of privacy-related interval uncertainty, for every n, we get an inter-

val Cn
def= C(x1, . . . ,xn). The quality of this interval approximation can be nat-

urally described by estimating the (Hausdorff) distance d(c,Cn) = min
C∈Cn

d(c, C)

between the actual value c and the interval: e.g., this distance is 0 if and only if
the interval Cn contains the desired value c.

Since each actual (hidden) value xi belongs to the corresponding interval
xi, we have Cn = C(x1, . . . , xn) ∈ Cn. The distance d(c,Cn) is defined as a
minimum, hence we have d(c,Cn) ≤ d(c, Cn). We can therefore conclude that
the rate of convergence for interval estimates is the same (or better) than for the
corresponding point estimates.

Let us now go back to the computational problem.

The resulting computational problem is known – as interval computations. While
privacy-related applications are reasonably novel, the problem of computing the
range of a known function f(x1, . . . , xn) under interval uncertainty xi ∈ xi is
a well-known and well-studied problem in applications, known as a problem of
interval computations; see, e.g., [9] (see also [16]).

Indeed, in many real-life problems, we are interesting in the values of some
quantity y which are difficult or impossible to measure directly; example include
the amount of oil in a given well or a distance to a star. To estimate the value of
this quantity y, we measure the values of easier-to-measure quantities x1, . . . , xn

related to y in a known way y = f(x1, . . . , xn), and then use the measured values
x̃i of these quantities to estimate y as ỹ = f(x̃1, . . . , x̃n).

Measurements are never 100% accurate. As a result, the result x̃ of the mea-
surement is, in general, different from the (unknown) actual value x of the desired
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quantity. The difference ∆x def= x̃−x between the measured and the actual values
is usually called a measurement error.

The manufacturers of a measuring device usually provide us with an upper
bound ∆ for the (absolute value of) possible errors, i.e., with a bound ∆ for
which we guarantee that |∆x| ≤ ∆. The need for such a bound comes from the
very nature of a measurement process: if no such bound is provided, this means
that the difference between the (unknown) actual value x and the observed value
x̃ can be as large as possible.

Since the (absolute value of the) measurement error ∆x = x̃ − x is bounded
by the given bound ∆, we can therefore guarantee that the actual (unknown)
value of the desired quantity belongs to the interval [x̃−∆, x̃+∆].

In many practical situations, we not only know the interval [−∆,∆] of possible
values of the measurement error; we also know the probability of different values
∆x within this interval [19].

In practice, we can determine the desired probabilities of different values of
∆x by comparing the results of measuring with this instrument with the results
of measuring the same quantity by a standard (much more accurate) measuring
instrument. Since the standard measuring instrument is much more accurate
than the one use, the difference between these two measurement results is prac-
tically equal to the measurement error; thus, the empirical distribution of this
difference is close to the desired probability distribution for measurement error.

There are two cases, however, when this determination is not done:

– First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When a Hubble telescope detects the light from a dis-
tant galaxy, there is no “standard” (much more accurate) telescope floating
nearby that we can use to calibrate the Hubble: the Hubble telescope is the
best we have.

– The second case is the case of measurements on the shop floor. In this case, in
principle, every sensor can be thoroughly calibrated, but sensor calibration
is so costly – usually costing ten times more than the sensor itself – that
manufacturers rarely do it.

In both cases, we have no information about the probabilities of ∆x; the only
information we have is the upper bound on the measurement error.

In this case, after performing a measurement and getting a measurement result
x̃i, the only information that we have about the actual value xi of the measured
quantity is that it belongs to the interval xi = [x̃i−∆i, x̃i+∆i]. In this situation,
for each i, we know the interval xi of possible values of xi, and we need to find
the range y of the function f(x1, . . . , xn) over all possible tuples xi ∈ xi.

Interval computations are sometimes easy. In some cases, it is easy to estimate
the desired range. For example, the arithmetic average E is a monotonically
increasing function of each of its n variables x1, . . . , xn, so its smallest possible
value E is attained when each value xi is the smallest possible (xi = xi) and its
largest possible value is attained when xi = xi for all i. In other words, the range
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E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)], where, E =
1
n
· (x1 + . . . + xn)

and E =
1
n
· (x1 + . . . + xn).

Interval computations are, in general, computationally difficult. For more com-
plex functions C(x1, . . . , xn), the problem of computing the range is often more
computationally difficult.

For example, it is known that the problem of computing the exact range
V = [V , V ] for the variance V over interval data xi ∈ [x̃i − ∆i, x̃i + ∆i] is,
in general, NP-hard; see, e.g., [8,12,13]. Specifically, there is a polynomial-time
algorithm for computing V , but computing V is, in general, NP-hard [8].

Efficient algorithms exist for several practically useful situations. In many prac-
tical situations, there are efficient algorithms for computing V ; see, e.g., [12,13].

For example, an O(n · log(n)) time algorithm exists when no two narrowed

intervals [x−i , x
+
i ], where x−i

def= x̃i −
∆i

n
and x+

i
def= x̃i +

∆i

n
, are proper subsets

of one another, i.e., when [x−i , x
+
i ] �⊆ (x−j , x

+
j ) for all i and j [3].

Computational problem are usually easier in the privacy case. In the privacy
case, intervals correspond to the fixed subdivision of the real line, For such sit-
uations, efficient algorithms exist for computing most statistical characteristics;
see, e.g., [12,13].

Important comment: there is a strong need to implement interval-related algo-
rithms in Oracle and SQL. In [12,13]:

– we have theoretically proven that our new algorithms produce correct results
in reasonable time (usually linear or quadratic), and

– we have shown, by implementing these algorithms in standard programming
languages, that the corresponding computation time is also practically rea-
sonable.

It is worth mentioning that in most real-worldapplications of statistical databases,
practitioners do not write new code in high-level programming languages, they
use systems like Oracle and SQL. So, to promote the use of interval methods, it is
important to implement our algorithms in systems such Oracle and SQL.

We hope that the privacy-enhancing character of interval-related algorithms
and their efficiency will inspire database designers to incorporate such algorithms
in the future versions of database management systems.

3 New Problem: Hierarchical Statistical Analysis Under
Privacy-Related Interval Uncertainty

Need for hierarchical statistical analysis. In the above description, we assumed
that we have all the data in one large database, and we process this large sta-
tistical database to estimate the desired statistical characteristics.
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In reality, the data is often stored hierarchically. For example, it makes sense
to store the census results by states, get averages and standard deviations per
state, and then combine these characteristics to get nation-wide statisticss; see,
e.g., [1].

Formulas behind hierarchical statistical analysis. Let the data values x1 . . . , xn

be divided into m < n groups I1, . . . , Im. For each group j, we know the fre-
quency pj of this group (i.e., the number nj of elements of this group divided by
the overall number of records), the average Ej over this group, and the popula-
tion variance Vj within j-th group.

One can show that in this case, E =
m∑

j=1
pj · Ej and V = VE + Vσ, where

VE =
m∑

j=1
pj · E2

j − E2 and Vσ =
m∑

j=1
pj · Vj .

Hierarchical case: situation with interval uncertainty. When we start with values
xi which are only known with interval uncertainty, we end up knowing Ej and
Vj also with interval uncertainty. In other words, we only know the intervals
Ej = [Ej , Ej ] and [V j , V j] that contain the actual (unknown) values of Ej and
Vj . In such situations, we must find the ranges of the possible values for the
population mean E and for the population variance V ; see, e.g., [14].

Analysis of the interval problem. The formula that describes the dependence
of E on Ej is monotonic in Ej . Thus, we get an explicit formula for the range

[E,E] of the population mean E: E =
m∑

j−1
pj · Ej and E =

m∑
j−1

pj ·Ej .

Since the terms VE and Vσ in the expression for V depend on different vari-
ables, the range [V , V ] of the population variance V is equal to the sum of the
ranges [V E , V E ] and [V σ, V σ] of the corresponding terms: V = V E + V σ and
V = V E + V σ. Due to similar monotonicity, we can find an explicit expression

for the range [V σ, V σ] for Vσ: V σ =
m∑

j=1
pj · V j and V σ =

m∑
j=1

pj · V j . Thus, to

find the range of the population variance V , it is sufficient to find the range of
the term VE . So, we arrive at the following problem:

4 Formulation of the Problem in Precise Terms and Main
Result

GIVEN: an integer m ≥ 1, m numbers pj > 0 for which
m∑

j=1
pj = 1, and m

intervals Ej = [Ej , Ej ].

COMPUTE the range VE = {VE(E1, . . . , Em) |E1 ∈ E1, . . . , Em ∈ Em}, where

VE
def=

m∑
j=1

pj ·E2
j − E2; E

def=
m∑

j=1

pj · Ej .
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Main result. Since the function VE is convex, we can compute its minimum
V E on the box E1 × . . . × Em by using known polynomial-time algorithms for
minimizing convex functions over interval domains; see, e.g., [23].

For computing maximum V E , even the particular case when all the values pj

are equal p1 = . . . = pm = 1/m, is known to be NP-hard; see, e.g., [8]. Thus, the
more general problem of computing V E is also NP-hard. Let us show that in a
reasonable class of cases, there exists a feasible algorithm for computing V E .

For each interval Ej , let us denote its midpoint by Ẽj
def=

Ej + Ej

2
, and its

half-width by ∆j
def=

Ej − Ej

2
. In these terms, the j-th interval Ej takes the

form [Ẽj −∆j , Ẽj +∆j ].

In this paper, we consider narrowed intervals [E−
j , E

+
j ], where E−

j
def= Ẽj−pj ·

∆j and E+
j

def= Ẽj + pj ·∆j . We show that there exists an efficient O(m · log(m))
algorithm for computing V E for the case when no two narrowed intervals are
proper subsets of each other, i.e., when [E−

j , E
+
j ] �⊆ (E−

k , E
+
k ) for all j and k.

Algorithm.

– First, we sort the midpoints Ẽ1, . . . , Ẽm into an increasing sequence. Without
losing generality, we can assume that Ẽ1 ≤ Ẽ2 ≤ . . . ≤ Ẽm.

– Then, for every k from 0 to m, we compute the value V (k)
E = M (k)− (E(k))2

of the quantity VE for the vector E(k) = (E1, . . . , Ek, Ek+1, . . . , Em).
– Finally, we compute V E as the largest of m+ 1 values V (0)

E , . . . , V
(m)
E .

To compute the values V (k)
E , first, we explicitly compute M (0), E(0), and V (0)

E =
M (0) − E(0). Once we computed the values M (k) and E(k), we can compute

M (k+1) = M (k) + pk+1 · (Ek+1)
2 − pk+1 · (Ek+1)2 and

E(k+1) = E(k) + pk+1 ·Ek+1 − pk+1 · Ek+1.

5 Proof

Number of computation steps.

– It is well known that sorting requires O(m · log(m)) steps.
– Computing the initial values M (0), E(0), and V (0)

E requires linear time O(m).
– For each k from 0 to m − 1, we need a constant number O(1) of steps to

compute the next values M (k+1), E(k+1), and V
(k+1)
E .

– Finally, finding the largest of m+ 1 values V (k)
E also requires O(m) steps.

Thus, overall, we need

O(m · log(m)) +O(m) +m ·O(1) +O(m) = O(m · log(m)) steps.
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Proof of correctness. The function VE is convex. Thus, its maximum V E on the
box E1 × . . .×Em is attained at one of the vertices of this box, i.e., at a vector
(E1, . . . , Em) in which each value Ej is equal to either Ej or to Ej .

To justify our algorithm, we need to prove that this maximum is attained at
one of the vectors E(k) in which all the lower bounds Ej precede all the upper
bounds Ej . We will prove this by reduction to a contradiction. Indeed, let us
assume that the maximum is attained at a vector in which one of the lower
bounds follows one of the upper bounds. In each such vector, let i be the largest
upper bound index followed by the lower bound; then, in the optimal vector
(E1, . . . , Em), we have Ei = Ei and Ei+1 = Ei+1.

Since the maximum is attained for Ei = Ei, replacing it with Ei = Ei − 2∆i

will either decrease the value of VE or keep it unchanged. Let us describe how
VE changes under this replacement. Since VE is defined in terms of M and E,
let us first describe how E and M change under this replacement. In the sum
for M , we replace (Ei)2 with

(Ei)
2 = (Ei − 2∆i)2 = (Ei)2 − 4 ·∆i ·Ei + 4 ·∆2

i .

Thus, the value M changes into M +∆iM , where

∆iM = −4 · pi ·∆i · Ei + 4 · pi ·∆2
i .

The population mean E changes into E +∆iE, where ∆iE = −2 · pi ·∆i. Thus,
the value E2 changes into (E +∆iE)2 = E2 +∆i(E2), where

∆i(E2) = 2 · E ·∆iE + (∆iE)2 = −4 · pi · E ·∆i + 4 · p2
i ·∆2

i .

So, the variance V changes into V +∆iV , where

∆iV = ∆iM −∆i(E2) = −4 · pi ·∆i ·Ei + 4 · pi ·∆2
i + 4 · pi ·E ·∆i− 4 · p2

i ·∆2
i =

4 · pi ·∆i · (−Ei +∆i + E − pi ·∆i).

By definition, Ei = Ẽi + ∆i, hence −Ei + ∆i = −Ẽi. Thus, we conclude that
∆iV = 4 · pi · ∆i · (−Ẽi + E − pi · ∆i). So, the fact that ∆iV ≤ 0 means that
E ≤ Ẽi + pi ·∆i = E+

i .
Similarly, since the maximum of VE is attained for Ei+1 = Ei+1, replacing

it with Ei+1 = Ei+1 + 2∆i+1 will either decrease the value of VE or keep it
unchanged. In the sum for M , we replace (Ei+1)

2 with

(Ei+1)2 = (Ei+1 + 2∆i+1)2 = (Ei+1)
2 + 4 ·∆i+1 ·Ei+1 + 4 ·∆2

i+1.

Thus, the value M changes into M +∆i+1M , where

∆i+1M = 4 · pi+1 ·∆i+1 ·Ei+1 + 4 · pi+1 ·∆2
i+1.

The population mean E changes into E+∆i+1E, where ∆i+1E = 2 ·pi+1 ·∆i+1.
Thus, the value E2 changes into E2 +∆i+1(E2), where

∆i+1(E2) = 2 ·E ·∆i+1E + (∆i+1E)2 = 4 · pi+1 ·E ·∆i+1 + 4 · p2
i+1 ·∆2

i+1.
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So, the term VE changes into VE +∆i+1V , where

∆i+1V = ∆i+1M −∆i+1(E2) =

4 · pi+1 ·∆i+1 ·Ei+1 + 4 · pi+1 ·∆2
i+1 − 4 · pi+1 ·E ·∆i+1 − 4 · p2

i+1 ·∆2
i+1 =

4 · pi+1 ·∆i+1 · (Ei+1 +∆i+1 − E − pi+1 ·∆i+1).

By definition, Ei+1 = Ẽi+1−∆i+1, hence Ei+1+∆i+1 = Ẽi+1. Thus, we conclude
that

∆i+1V = 4 · pi+1 · (Ẽi+1 − E − pi+1 ·∆i+1).
Since VE attains maximum at (E1, . . . , Ei, Ei+1, . . . , Em), we have ∆i+1V ≤ 0,
hence E ≥ Ẽi+1 − pi+1 ·∆i+1 = E−

i+1.
We can also change both Ei and Ei+1 at the same time. In this case, from

the fact that VE attains maximum, we conclude that ∆VE ≤ 0.
Here, the change ∆M in M is simply the sum of the changes coming from Ei

and Ei+1: ∆M = ∆iM + ∆i+1M , and the change in E is also the sum of the
corresponding changes: ∆E = ∆iE + ∆i+1E. So, for ∆V = ∆M − ∆(E2), we
get

∆V = ∆iM +∆i+1M − 2 · E ·∆iE − 2 · E ·∆i+1E − (∆iE)2 − (∆i+1E)2−
2 ·∆iE ·∆i+1E.

Hence,

∆V = (∆iM −2 ·Ei ·∆iE− (∆iE)2)+(∆i+1M −2 ·Ei+1 ·∆i+1E− (∆i+1E)2)−
2 ·∆Ei ·∆Ei+1,

i.e., ∆V = ∆iV +∆i+1V − 2 ·∆iE ·∆i+1E.
We already have expressions for ∆iV , ∆i+1V , ∆iE, and ∆i+1E, and we

already know that E−
i+1 ≤ E ≤ E+

i . Thus, we have D(E) ≤ 0 for some
E ∈ [E−

i+1, E
+
i ], where

D(E) def= 4 ·pi ·∆i · (−E+
i +E)+4 ·pi+1 ·∆i+1 · (E−

i+1−E)+8 ·pi ·∆i ·pi+1 ·∆i+1.

Since the narrowed intervals are not subsets of each other, we can sort them
in lexicographic order; in which order, midpoints are sorted, left endpoints are
sorted, and right endpoints are sorted, hence E−

i ≤ E−
i+1 and E+

i ≤ E+
i+1.

For E = E−
i+1, we get

D(E−
i+1) = 4 · pi ·∆i · (−E+

i + E−
i+1) + 8 · pi ·∆i · pi+1 ·∆i+1 =

4 · pi ·∆i · (−E+
i + E−

i+1 + 2 · pi+1 ·∆i+1).

By definition, E−
i+1 = Ei+1 − pi+1 ·∆i+1, hence E−

i+1 + 2 · pi+1 · ∆i+1 = E+
i+1,

and D(E−
i+1) = 4 · pi ·∆i · (E+

i+1 − E+
i ) ≥ 0. Similarly,

D(E+
i ) = 4 · pi+1 ·∆i+1 · (E−

i+1 − E+
i ) ≥ 0.

The only possibility for both values to be 0 is when interval coincide; in this
case, we can easily swap them. In all other cases, all intermediate values D(E)
are positive, which contradicts to our conclusion that D(E) ≤ 0. The statement
is proven.
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6 Auxiliary Result: What If the Frequencies Are Also
Only Known with Interval Uncertainty?

Reminder: hierarchical statistical data processing. If we know the frequency of
the group j, the mean Ej of the group j, and its second moment Mj = Vj +E2

j =
1

pj · n
·
∑
i∈Ij

x2
i , then we can compute the overall mean E and the overall variance

as E =
m∑

j=1
pj · Ej and V =

m∑
j=1

pj ·Mj − E2.

Reminder: hierarchical statistical data processing under interval uncertainty. In
the above text, we considered the case when the statistical characteristics Ej

and Vj corresponding to different groups are known with interval uncertainty,
but the frequencies pj are known exactly.

New situation. In practice, the frequencies pj may also only be known with
interval uncertainty. This may happen, e.g., if instead of the full census we
extrapolate data – or if we have a full census and try to take into account that
no matter how thorough the census, a certain portion of the population will be
missed.

In practice, the values xi (age, salary, etc.) are usually non-negative. In this
case, Ej ≥ 0. In this section, we will only consider this non-negative case. Thus,
we arrive at the new formulation of the problem:

GIVEN: an integerm ≥ 1, and for every j from 1 to m, intervals [p
j
, pj ], [Ej , Ej ],

and [M j ,M j ] for which p
j
≥ 0, Ej ≥ 0, and M j ≥ 0.

COMPUTE the range E = [E,E] of E =
m∑

j=1
pj ·Ej and the range M = [M,M ]

of M =
m∑

j=1
pj ·Mj − E2 under the conditions that pj ∈ [p

j
, pj ], Ej ∈ [Ej , Ej ],

Mj ∈ [M j,M j ], and
m∑

j=1
pj = 1.

Derivation of an algorithm for computing E. When the frequencies pj are known,
we can easily compute the bounds for E. In the case when pj are also known
with interval uncertainty, it is no longer easy to compute these bounds.

Since E monotonically depends on Ej , the smallest value E of E is attained
when Ej = Ej for all j, so the only problem is to find the corresponding prob-
abilities pj . Suppose that p1, . . . , pn are minimizing probabilities, and for two
indices j and k, we change pj to pj +∆p (for some small ∆p) and pk to pk−∆p.
In this manner, the condition

m∑
j=1

pj is preserved. After this change, E changes

to E +∆E, where ∆E = ∆p · (Ej − Ek).
Since we start with the values at which E attains its minimum, we must

have ∆E ≥ 0 for all ∆p. If both pj and pk are strictly inside the corresponding
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intervals, then we can have ∆p of all signs hence we should have Ej = Ek.
So, excluding this degenerate case, we should have at most one value pi strictly
inside – others are at one of the endpoints.

If pj = p
j
and pk = pk, then we can have ∆p > 0, so ∆E ≥ 0 implies Ej ≥ Ek.

So, the values Ej for all j for which pj = p
j

should be ≤ than all the values Ek

for which pk = pk. This conclusion can be reformulated as follows: if we sort the
groups in the increasing order of Ej , we should get first pj then all p

k
. Thus, it is

sufficient to consider only such arrangements of probabilities for which we have
p1, . . . pl0−1, plo , pl0+1

, . . . p
m

. The value l0 can be uniquely determined from the

condition that
m∑

j=1
pj = 1. Thus, we arrive at the following algorithm:

Algorithm for computing E. To compute E, we first sort the values Ej in in-
creasing order. Let us assume that the groups are already sorted in this order,
i.e., that

E1 ≤ E2 ≤ . . . ≤ Em.

For every l from 0 to k, we then compute

Pl = p1 + . . . + pl + p
l+1

+ . . . + p
n

as follows: we explicitly compute the sum P0, and then consequently compute
Pl+1 as Pl + (pl+1 − p

l+1
). This sequence is increasing. Then, we find the value

l0 for which Pl0 ≤ 1 ≤ Pl0+1, and take

E =
l0−1∑
j=1

pj ·Ej + pl0 ·El0 +
m∑

j=l0+1

p
j
· Ej ,

where pl0 = 1−
l0−1∑
j=1

pj −
m∑

j=l0+1
p

j
.

Computation time. We need O(m · log(m)) time to sort, O(m) time to compute
P0, O(m) time to compute all Pl and hence, to find l0, andO(m) time to compute
E – to the total of O(m · log(m)).

Algorithm for computing E. Similarly, we can compute E in time O(m · log(m)).
We first sort the values Ej in increasing order. Let us assume that the groups
are already sorted in this order, i.e., that

E1 ≤ E2 ≤ . . . ≤ Em.

For every l from 0 to k, we then compute

Pl = p
1
+ . . . + p

l
+ pl+1 + . . . + pn
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as follows: we explicitly compute the sum P0, and then consequently compute
Pl+1 as Pl − (pl+1 − p

l+1
). This sequence is decreasing. Then, we find the value

l0 for which Pl0 ≥ 1 ≥ Pl0+1, and take

E =
l0−1∑
j=1

p
j
·Ej + pl0 ·El0 +

m∑
j=l0+1

pj · Ej ,

where pl0 = 1−
l0−1∑
j=1

p
j
−

m∑
j=l0+1

pj .

Derivation of an algorithm for computing M . First, we notice that the minimum
is attained when Mj are the smallest (Mj = M j) and Ej are the largest (Ej =
Ej). So, the only problem is to find the optimal values of pj.

Similarly to the case of E, we add ∆p to pj and subtract ∆p from pk. Since we
started with the values at which the minimum is attained we must have∆M ≤ 0,
i.e., ∆ · [M j −Mk − 2E · (Ej − Ek)] ≤ 0. So, at most one value pj is strictly
inside, and if pj = p

j
and pk = pk, we must have M j −Mk−2E · (Ej−Ek) ≤ 0,

i.e., M j − 2E ·Ej ≤Mk − 2E ·Ej .
Once we know E, we can similarly sort and get the optimal pj . The problem is

that we do not know the value E, and for different values E, we have different or-
ders. The solution to this problem comes from the fact that the above inequality

is equivalent to comparing 2E with the ratio
M j −Mk

Ej − Ek

. Thus, if we compute all

n2 such ratios, sort them, then within each zone between the consequent values,
the sorting will be the same. Thus, we arrive at the following algorithm.

Algorithm for computing M . To compute M , we first compute all the ratios
M j −Mk

Ej − Ek

, sort them, and takeEs between two consecutive values in this sorting.

For each such E, we sort the groups according to the value of the expression
M j − 2E ·Ej . In this sorting, we select the values pj = (p1, . . . , pl0−1, pl0 , pl0+1

,

. . . , p
m

) and pick l0 in the same manner as when we computed E. For the

resulting pj , we then compute M =
m∑

j=1
pj ·M j −

(
m∑

j=1
pj ·Ej

)2

.

Computation time. We need O(m · log(m)) steps for each of m2 zones, to the
(still polynomial) total time O(m3 · log(m))).

Algorithm for computing M . A similar polynomial-time algorithm can be used

to compute M . We first compute all the ratios
M j −Mk

Ej − Ek

, sort them, and take

Es between two consecutive values in this sorting.
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For each such E, we sort the groups according to the value of the expression
M j − 2E ·Ej . In this sorting, we select the values

pj = (p
1
, . . . , p

l0−1
, pl0 , pl0+1, . . . , pm)

and pick l0 in the same manner as when we computed E. For the resulting pj ,
we then compute

M =
m∑

j=1

pj ·M j −

⎛⎝ m∑
j=1

pj · Ej

⎞⎠2

.

7 Conclusion

In medicine, in social studies, etc., it is important to perform statistical data
analysis. By performing such an analysis, we can find, e.g., the correlation be-
tween the age and income, between the gender and side effects of a medicine,
etc. People are often willing to supply the needed confidential data for research
purposes. However, many of them are worried that it may be possible to extract
their confidential data from the results of statistical data processing – and indeed
such privacy violations have occurred in the past.

One way to prevent such privacy violations is to replace the original confiden-
tial values with ranges. For example, we divide the set of all possible ages into
ranges [0, 10], [10, 20], [20, 30], etc. Then, instead of storing the actual age of 26,
we only store the range [20, 30] which contains the actual age value.

This approach successfully protects privacy, but it leads to a computational
challenge. For example, if we want to estimate the variance, we can no longer
simply compute the statistic such as population variance

V =
1
n
·

n∑
i=1

x2
i −
(

1
n
·

n∑
i=1

xi

)2

;

since we only know the intervals [xi, xi] of possible values of xi, we can only
compute the range V of possible values of this statistic when xi ∈ xi. In our
previous papers, we designed algorithms efficiently computing this range based
on the intervals xi.

In many real-life situations, several research groups independently perform
statistical analysis of different data sets. The more data we use for statistical
analysis, the better the estimates. So, it is desirable to get estimates based on
the data from all the data sets. In principle, we can combine the data sets and re-
process the combined data. However, this would require a large amount of data
processing. It is known that for many statistics (e.g., for population variance),
we can avoid these lengthy computations: the statistic for the combined data
can be computed based on the results of processing individual data sets.

In this paper, we show that a similar computational simplification is possible
when instead of processing the exact values, we process privacy-related interval
ranges for these values.
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Abstract. In this paper, a novel algorithm optimizing the utilization of backup 
path resources for survivable optical networks, based on graph vertex-coloring 
approach, is introduced. To the best of our knowledge, this is the first 
optimization technique, dedicated to WDM grooming networks, such that does 
not increase the length of backup paths and thus provides fast service 
restoration. Due to NP-completeness of the proposed Integer Linear 
Programming model, the respective heuristic algorithm has been developed. 

The concept was evaluated for the U.S. Long-Distance Network, European 
COST 239 Network and Polish PIONIER Network. The results show that with 
only a little capacity utilization degradation, fast restoration can be achieved 
and the resource utilization kept at low level. The observed reduction in 
restoration time values is significant (up to 40%), compared to the typical 
a priori approach.  

Keywords: network survivability, WDM mesh grooming networks, routing. 

1   Introduction 

This paper investigates the issues of service survivability in optical transport 
networks. The introduction of wavelength division multiplexing (WDM) in optical 
networks provided links consisting of sets of non-overlapping channels 
(wavelengths), each one capable of transmitting the data independently at peak 
electronic speed of a few Gbps. A failure of any network element may thus lead to 
large data and revenue losses [2, 14]. In WDM networks a demand to transmit data 
between a given pair of end nodes involves a setup of an end-to-end connection,
originally referred to as a lightpath1. Each lightpath is established by allocating 
a sequence of wavelengths at consecutive links. In case of imposed wavelength 
continuity constraint, the lightpath must utilize the same wavelength on each link it 
uses, otherwise wavelength conversions may be performed at lightpath transit nodes.  

∗  This work was partially supported by the Ministry of Science and Higher Education, Poland, 
under grants 3 T11D 001 30 and N517 022 32/3969. 

1  Each lightpath occupies the whole wavelength of each link it traverses. 
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Fig. 1. An example structure  
of a three-layer network

Survivability of connections, originally defined as the capability of a system to 
fulfill its mission in a timely manner, in the presence of attacks, failures or accidents 
[4], is achieved by introducing redundancy. It means that for the main path of 
a connection, referred to as active path, there are additional (redundant) paths, called 
backup paths, used to protect the connection in case of a certain failure scenario 
[7, 9, 12, 19, 20]. Single network element failures are mostly considered. 
Survivability is based on either dedicating backup resources in advance (protection
scheme) or on dynamic restoration [12, 19, 20]. Regarding the scope of a backup 
path, path, region or link protection/restoration is typically used [7, 9, 13, 19]. 

There is a significant difference between the typical bandwidth requirement of the 
end-user traffic demand and the capacity of a wavelength. Efficient sharing of the 
bandwidth of a wavelength by multiple traffic flows 
is necessary in order to avoid large waste of 
transmission resources. Low speed traffic needs to be 
multiplexed (“groomed”) onto lightpaths. Traffic 
grooming problem can be formulated as follows: for 
a given request matrix(es) and network configuration, 
i.e., physical topology, type of a node, number of 
transceivers at each node, number of wavelengths at 
each fibre, the capacity of each wavelength, etc., 
determine which low speed demands should be 
multiplexed together on which wavelength. This 
leads to a multilayer architecture, as shown in Fig. 1. 
Examples of multilayer network architectures 
include: IP over SONET over WDM or IP over WDM.

If the set of connection requests is given in advance – we deal with static 
grooming, otherwise the grooming problem is dynamic. For static traffic grooming, 
the objective is to minimize the network cost, e.g. total number of wavelength-links. 
This is based on the assumption that the network operates in the non-blocking 
scenario. Otherwise (i.e. for a dynamic grooming) objective is to maximize the 
network throughput, because not all connections can be set up due to resource 
limitations. Traffic grooming is usually divided into four subproblems [23], which are 
not necessarily independent: 

1) determining the virtual topology that consists of lightpaths, 
2) routing the lightpaths over the physical topology, 
3) performing wavelength assignment to the lightpaths, 
4) routing the traffic on the virtual topology. 

The first two problems are NP-complete, so traffic grooming in a mesh network is 
also NP-complete [23]. Past research efforts on traffic grooming have mainly focused 
on SONET/WDM ring networks, with the objective function of either to minimize the 
number of wavelengths or SONET ADMs. As fiber-optic backbone networks 
migrated from rings to mesh, traffic grooming on WDM mesh networks became an 
important area of research [1, 15, 23, 25]. The work in [24] reviews most of recent 
work on traffic grooming. Majority of papers on optical networks considered various 
problems separately; either traffic grooming, or protection/restoration. Here, we 
propose a model for fast service restoration under shared protection at lightpath level 
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in WDM mesh grooming networks, multiplexing low-rate end-user traffic into 
a single WDM wavelength [1, 11, 15], using Time Division Multiplexing (TDM). 
These streams are then carried jointly by a certain lightpath (i.e. groomed).  

In WDM grooming networks, survivability is typically provided at either lightpath 
or connection level. In protection-at-lightpath level (PAL) [15], operating at the 
aggregate (lightpath) level, survivability is provided on a lightpath end-to-end basis. It 
means that a single backup lightpath protects all the active paths of connections 
groomed into a given active lightpath. In PAL (Fig. 2), each connection can be 
realized by a sequence of active lightpaths, each one protected by a backup lightpath. 
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Fig. 2. An example of protection-at-lightpath (PAL). There are two connections established 
between pairs of nodes (3, 9) and (3, 13), respectively. The active paths of connections (3, 9)
and (3, 13) utilize lightpaths (l

1

a, l
2

a) and (l
1

a, l
3

a), respectively, meaning that they are 
groomed onto a common active lightpath l

1

a at links (3, 4) and (4, 5). The backup paths, 
providing end-to-end protection with regard to active lightpaths, utilize backup lightpaths 
(l

1

b, l
2

b) and (l
1

b, l
3

b), respectively, meaning that backup lightpath l
1

b provides end-to-end 
protection with regard to active lightpath l

1

a with two groomed active paths.  

In contrast, protection-at-connection level (PAC) [15] operates at a per-flow basis 
and assumes that each active path is protected by a single end-to-end backup. In PAC 
several backup paths may utilize the same wavelength, but at different time slots. 

Assuring survivability of connections by establishing backup paths increases the 
ratio of link capacity utilization, which in turn limits the number of connections that 
may be established. However, this ratio can be reduced by applying sharing the link 
capacities that are reserved for backup paths [6, 9, 19]. Such sharing is possible, if 
these paths are to protect against different failure scenarios (i.e. if the respective 
protected parts of active paths are mutually disjoint) [6, 9]. However, typical 
optimization technique, here called the a priori approach, results in increasing the 
length of backup paths, compared to the “no optimization” case. This is due to 
performing the optimization when calculating the costs of links to be used in backup 
paths. Independent of the real link lengths, these link costs are set to 0, if only their 
capacities may be shared. As a result, the time of connection restoration gets 
increased, since, due to the three-way handshake protocol [20], the longer the backup 
paths are, the more time it takes to perform recovery actions. 

Although the issues of assuring fast service restoration and the optimization of link 
capacity utilization have been separately investigated in several papers, e.g. in [6, 16], 
they still have not been extensively studied jointly. In general it is not possible to 
achieve the minima of both the objectives. The papers [17] and [18] consider the 
problem of minimizing both the functions for the case of sharing the backup paths 
assuming no traffic grooming applied. A slightly different approach is proposed in 
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[16], where a model to achieve fast connection restoration by minimizing the length 
of backup paths is introduced. It incorporates a parameter µ to each backup path link 
cost in a way that the cost reflects both the link length and the ratio of unused capacity 
that the backup path may use. However, there is no approach introduced to provide 
fast service restoration under backup path sharing for WDM grooming networks. 

This paper is to propose the algorithm that jointly optimizes the ratio of link 
capacity utilization and provides fast service restoration, dedicated to WDM 
grooming networks with full wavelength conversion capability and the case of 
providing survivability at lightpath level (PAL). To the best of our knowledge, this is 
the first resource utilization optimization approach operating at subwavelength 
granularity such that does not increase the length of backup paths. The traffic is 
assumed to be static (i.e. the set of connection requests is given in advance). The 
proposed technique may be also used for the case of dynamic traffic where connection 
requests arrive one at a time.  However, in such blocking scenario, different from the 
one considered here, the objective is to minimize the network resources used for each 
request, leading to several grooming policies. 

The rest of the paper is organized as follows. The next section discusses first the 
typical a priori optimization problems, extended here to the case of protection at 
lightpath level in WDM grooming networks. In the following section, the ILP 
optimization problem is stated, which is NP-complete, so the respective heuristic 
algorithm is proposed. In Section 4, results of modeling, obtained for the 
U.S. Long-Distance Network, European COST 239 Network and Polish PIONIER 
Network, are given in detail and discussed. They include the ratio of total link 
capacity utilization (i.e. for both active and backup lightpaths), the length of backup 
lightpaths and the values of service restoration time in WDM layer. They show that 
the proposed solution significantly outperforms the typical resource utilization 
optimization approach in terms of obtained values of service restoration time for the 
price of only little degradation in the ratio of link capacity utilization. The results are 
the original contribution and are published for the first time. 

2   Sharing the Backup Path Capacities in WDM Grooming 
Networks Under PAL 

Sharing the backup lightpath capacities is possible, if these lightpaths are to protect 
against different failure scenarios, i.e. if the respective protected parts of active 
lightpaths are mutually disjoint. In other words, it must be guaranteed, that under any 
network element failure scenario there is no need to activate more than one backup 
lightpath sharing the common bandwidth unit. Considering the optimization strength, 
we may typically have intra-(inter-)demand sharing between backup lightpaths 
protecting disjoint parts of the same (different) active lightpaths, respectively.  

Typical a priori optimization is performed before finding backup lightpaths [6, 9], 
when calculating the cost of ξij of each link lij to be used in a backup lightpath k,
according to Eq. 1. However, as already stated, the found backup lightpaths are not 
the shortest ones here, since the calculated costs of links are often not equal to the link 
lengths. Any link lij, even a long one, may be used in a backup lightpath, since its cost 
ξij equals 0, if only it has enough backup capacity that may be shared (if mij

(k) ≥ r(k)). 
Long backups make in turn the process of connection restoration time-consuming.  
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where:  
 r(k) - the requested capacity, 
 mij

(k) - the capacity reserved so far at a link lij (for the backups of the already 
   established active lightpaths) that may be shared,  
 fij - the unused capacity of a link lij

 sij - the length of a link lij.

The optimization of resource utilization introduced here, given by Algorithm 
FSR-SLL, is performed after establishing the connections. Its scope is confined to 
each single link lij, so sharing the backup lightpaths is performed within the set of 
backup lightpaths installed at wavelengths of a given link lij only. This in turn implies 
that the backup lightpaths, originally established as the shortest ones, remain 
unchanged, i.e. they use the same links which they used before applying the 
optimization. Since the length of the backup lightpaths is not increased, fast service 
restoration is possible. 

The proposed FSR-SLL algorithm, given in Fig. 3, is executed at each network link 
lij independently. For each link lij it tries to reorganize the assignment of backup 
channels by dividing the set of backup lightpaths Bij into subsets Bij

s, such that each 
subset contains backup lightpaths that protect mutually disjoint active lightpaths and 
thus may share a common link channel. The number of subsets Bij

s must be 
minimized, since it denotes the number of channels that will become allocated at lij

for backup lightpaths after applying the optimization. 

INPUT 
Network topology; the sets Bij of backup lightpaths installed on channels of links lij;
the sets of free channels at links lij; the sets of channels allocated for active 
lightpaths at links lij

OUTPUT 
The sets Bij

s that determine the new assignment of link channels to backup lightpaths

For each link lij:
Step 1.  Divide the set Bij of backup lightpaths, installed on channels of a link lij into 
 subsets Bij

s such that: 
− each subset contains backup lightpaths that may share capacity one another 
− the number of subsets Bij

s is minimized

Step 2.  For each subset Bij
s:

 Step 2a. delete original link channel allocations for the backups of Bij
s

 Step 2b. apply sharing by allocating one common unit of bandwidth for all 
  the backups of Bij

s

Computational complexity: NP-complete

Fig. 3. FSR-SLL algorithm (optimization of backup path capacity utilization providing Fast 
Service Restoration for Shared protection at Lightpath Level)
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The problem of optimally dividing the set Bij of backup lightpaths installed at each 
link lij into subsets Bij

s (Step 1 of FSR-SLL algorithm) is NP-complete as it equivalent 
to the vertex-coloring problem of an induced graph of conflicts Gij, which is also 
NP-complete [10]. Generally, in such a graph of conflicts G = (V, E) there is an edge 
between any two vertices v and w, if and only if there is a conflict between them.  

The objective is to find a partition of vertices of G into a minimal number of 
subsets of mutually compatible vertices, i.e. into subsets of pair-wise non adjacent 
(i.e. non-conflicting) vertices. As given in [8], a (proper) coloring of vertices of 
a graph G is a mapping f: V C, where V is a set of vertices of G and C is a finite set 
of colors, each color being represented by an integer number such that neighboring 
vertices are assigned different colors (i.e. if an edge vw∈E then f(v)≠ f(w)).  

For each link lij an induced graph Gij is constructed, such that: 

- its vertices denote backup lightpaths that are installed at channels of a link lij;
- there is an edge between a given pair of vertices u and v in Gij, if and only if there 
 is a conflict between the respective backup lightpaths (i.e. when the protected 
 parts of active lightpaths are not mutually disjoint), implying that the backups 
 must be assigned different units of bandwidth; 
- the colors assigned to vertices of Gij define the assignment of backup lightpaths to 
 certain wavelengths of a link lij.

It turns out that in case of full wavelength conversion capability, no strict 
assignment of wavelengths to certain backup lightpaths is needed at each link lij and 
that it is sufficient only to calculate the minimum number of wavelengths required 
under backup lightpath capacity sharing.  

However, this problem is still NP-complete, since it is equivalent to the issue of 
finding the chromatic number χ(Gij) [10] being the smallest number of colors required 
to color the vertices of Gij. One of the known bounds on χ(Gij) are: 

1)()()( +∆≤≤ ijijij GGG χω (2)

where:  
∆(Gij)  - the maximum degree2 of a vertex in 

    Gij,
ω(Gij)  -  the maximum size of the fully 

    connected subgraph of Gij, referred 
    to as clique [10]. 

Using the upper bound of ∆(Gij)+1 to estimate 
the number of link channels needed at lij may, 
however, give the results far greater from the 
optimal ones. For instance, if Gij has a topology of 
a star [10] with n = 9 vertices, as given in Fig. 4, 
where ∆(Gij) = n-1 and ω(Gij) = 2 then n units of 
bandwidth would be used instead of the sufficient 
two units. This implies that even under full 

2 Degree of a vertex v in Gij, defined as deg(v) is the number of edges incident to v in Gij.

1

2

2

2

2

2

2

2

2

Fig. 4. Example star topology with 
assigned colors. ∆(Gij)=n-1=8;  
ω(Gij)=2 and  χ(Gij)=2. 
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wavelength conversion capability, knowledge of χ(Gij) is necessary. What is more, in 
order to obtain the value of χ(Gij), one must always color the vertices of a Gij,
meaning that when calculating the value of χ(Gij), a vertex graph-coloring of Gij is 
also returned.  

In Sections 2.1 and 2.2 the algorithms of finding both the optimal as well as 
approximate values of χ(Gij), respectively, to determine the minimal number backup 
channels for each link lij (Step 1 of Algorithm 1) for protection at lightpath level and 
full wavelength conversion capability, will be introduced. For each link, they utilize 
a graph vertex-coloring routine and thus apart from returning the value of χ(Gij), they 
also find the strict wavelength assignment with respect to backup lightpaths of lij.

2.1   ILP Model of Sharing the Backup Capacities for Traffic Grooming  
(FSR-SLL-VCO) 

variables 

k = 1,2,…, K numbers of backup lightpaths in a network 
c = 1,2,…, C numbers of colors to be assigned; C - the maximum 

allowed color - is set to ∆(Gij)+1  
c

kx   takes value of 1, if a backup lightpath k is assigned              

 a color c, 0 otherwise      
cb takes value of 1, if a color c is assigned to any vertex in 

Gij, 0 otherwise 

objective
 For a given graph Gij it is to find optimal backup lightpath bandwidth 
 sharing by minimizing the total number of used wavelengths at lij and thus 
 minimizing the following cost: 

=

=
C

c

cbF
1

(3)

constraints 
 (1) on assigning each vertex k of a given graph Gij one color c only 

1
1

=
=

C

c

c
kx ; Kk ,,2,1= ; (4)

 (2) assuring that neighboring vertices of Gij receive different colors 

cc
m

c
k bxx ≤+  for each edge ),( mke =  in Gij; Cc ,,2,1= ; (5)

 (3) excluding the link channels allocated for active lightpaths 

0
1 1

=
= =

K

k

C

c

c
kx

if 
c

kx denotes a link channel c allocated at 

link lij for an active lightpath k
(6)
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 (4) on taking the allowable values 

{ }1,0∈c
kx ; Kk ,,2,1= ; Cc ,,2,1= ;

{ }1,0∈cb ; Cc ,,2,1= ;
(7)

2.2   Heuristic Algorithm of Sharing the Backup Capacities in WDM Grooming 
Networks (FSR-SLL-VCH) 

Since the problem formulated in Section 2.1 is NP-complete, we introduce the 
following FSR-SLL-VCH heuristic algorithm of polynomial computational 
complexity (Fig. 5). 

INPUT 

Network topology; the sets Bij of backup lightpaths installed on channels of links lij; the 
sets of free channels at links lij,; the sets of channels originally allocated for active 
lightpaths at links lij

OUTPUT 
The sets Bij

s that determine the new assignment of link channels to backup lightpaths

For each link lij:

Step 1.  Create graph of conflicts Gij for the set Bij of backup lightpaths  

Step 2.  Divide the set Bij of backup lightpaths, installed on channels of a link lij into 
 subsets Bij

s by coloring the vertices in Gij using the one of the heuristic 
 algorithms of graph vertex-coloring 

Step 3. Delete original link channels allocations for the backup lightpaths of lij and 
 apply backup bandwidth sharing by allocating one common channel for backup 
 lightpaths from each subset Bij

s, using channels not used by active lightpaths

Computational complexity: polynomial (depends on the complexity of graph vertex-coloring routine used in Step 2)

Fig. 5. FSR-SLL-VCH algorithm (computationally effective version of FSR-SLL algorithm 
using graph Vertex Coloring Heuristics)

As for the graph vertex-coloring heuristic algorithm, to be used in Step 2 of the 
above algorithm, for instance Largest First (LF) or Saturation Degree Ordering
(DSATUR) algorithm, described in [10] may be used, since either of them provides 
good results in terms of minimizing the total number of utilized colors for the price of 
acceptably low polynomial computational complexity (O(n + m) and O((n + m)log n), 
where n and m denote the numbers of vertices and edges in Gij, respectively).  

In LF, vertices of each Gij are first ordered descending their degree values and then 
sequentially assigned the lowest possible color based on their position in this 
ordering, meaning that vertices of higher degree receive their colors first. DSATUR 
uses the saturation degree of each vertex v (instead of a typical vertex degree), 
defined as the number of already differently colored neighbors of v.

Fig. 6 shows an example vertex-coloring of a graph of conflicts Gij, using the LF 
algorithm. Suppose that at a link lij there are five backup lightpaths (occupying five 
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wavelengths) with conflicts as given in Fig. 6a. After applying the LF algorithm, it is 
clear from (6b) that two colors were sufficient to color the vertices of Gij, implying 
that two wavelengths will be finally needed at lij for backup lightpaths (instead of 
previous five).  

descending ordering 
of Gij vertices

1 3 5 2 4 

degrees of Gij

vertices
3 2 1 1 1 

color assignment 1 2 1 2 2 

2

4

5

3

1

(a) graph of conflicts Gij (b) vertex-coloring of Gij

Fig. 6. Example vertex-coloring obtained using LF algorithm 

3   Modeling Assumptions 

The modeling was performed for the U.S. Long-Distance Network [22], European 
COST 239 Network [21] and Polish PIONIER Network [5], presented in Figs. 7-9, 
respectively. Due to NP-completeness of the original problem, only heuristic 
algorithms were used in computations. Simulations were performed using our 
dedicated network simulator implemented in C++. Their goals were to measure the 
link capacity utilization ratio and the values of connection restoration time in WDM 
layer for the static traffic case. Time of lightpath restoration was measured according 
to [12, 20] and comprised: time to detect a failure, link propagation delay, time to 
configure backup lightpath transit nodes and message processing delay at network 
nodes (including queuing delay). All the network links were assumed to have 8 
channels each with grooming capability g = 4 (i.e. offering 4 subchannels each of 
equal capacity). Channel capacity unit was considered to be the same for all the 
network links. Network nodes were assumed to have a full channel (wavelength) 
conversion capability. 

For each connection, the following properties were assumed: 

− protection against a single link failure (each of the failure states consisted of 
a failure of one link at a time, the rest being fully operational), 

− protection at lightpath level (PAL) implying the use of a single backup lightpath 
for all the active paths groomed onto a common active lightpath, 

− LF graph vertex-coloring algorithm for backup lightpath capacity sharing at each 
link lij,

− a demand of resource allocation equal to the capacity of one subchannel (equal 
to the value of one channel capacity divided by g),

− provisioning 100% of the requested bandwidth after a failure of a network 
element, 
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− a demand to assure unsplittable flows (both for active and backup lightpaths), 

− the distance metrics and Dijkstra’s shortest lightpath algorithm [3] in all 
lightpath computations, 

− the three-way handshake protocol of restoring the connections (the exchange of 
LINK FAIL, SETUP and CONFIRM messages), described in [12, 20]. 
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Fig. 7. U.S. Long-Distance Network        (28 
nodes, 45 bidirectional links) 

Fig. 8. European COST 239 Network (19 
nodes, 37 bidirectional links) 
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Fig. 9.  Polish PIONIER Network (24 nodes, 31 bidirectional links) 

The features of the proposed optimization technique were tested using two 
scenarios of network load. In the first case, the set of connection demands consisted 
of 10% of all the possible network node pairs, which amounted to 38, 17 and 28 
demands for U.S. Long-Distance Network, European COST 239 Network and Polish 
PIONIER Network, respectively. Using this scenario there were always enough 
resources to establish all the demanded connections. 

The second scenario was intended to test the properties of the proposed 
optimization technique under varying network load. In this case, only the 
U.S. Long-Distance Network was examined. The size of connection demand set 
varied from 10 to 100% of all the possible network node pairs. 
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During a single modeling, shown below in Fig. 10, one particular variant of 
optimization strength was provided for all the connections. 

Repeat r* times the following steps:

Step 1.  Randomly choose a given number of pairs of source s and destination d nodes 

Step 2.  Try to establish the survivable connections utilizing any of the routing 
 algorithms allowing traffic grooming and providing protection at lightpath 
level  with the respective optimization of backup lightpath capacity utilization**

Step 3. Store the ratio of link capacity utilization and the lengths of the backups 

Step 4. t* times simulate random failures of single links. For each failure state restore 
 connections that were broken and note the values of connection restoration time 

*    during each investigation, r = 30 and t = 30 were assumed  
**  any type of sharing is allowed here 

Fig. 10.  Research plan

4   Modeling Results 

4.1   WDM Layer Link Capacity Utilization Ratio 

Figs. 11-13 show the average values of link capacity utilization ratio for all variants of 
optimization strength in ascending order, while Table 1 gives the lengths of the 
respective 95% confidence intervals. The obtained results prove that the proposed 
FSR-SLL-VCH optimization routine remarkably reduces the ratio of link capacity 
utilization. Under FSR-SLL-VCH, 40% less resources were needed on average to 
establish survivable connections, compared to the “no optimization case”. The best 
results were obtained for PIONIER Network with parallel intra- and inter-demand 
sharing, for which FSR-SLL-VCH reduced the link capacity utilization even up to 
58%. It’s worth mentioning that, although the a priori optimization gives slightly 
better link capacity utilization ratio in all cases, the length of backup lightpath and 
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Fig. 11. Average ratio of link capacity 
utilization as a function of optimization 
strength for U.S. Long-Distance Network 

Fig. 12. Average ratio of link capacity 
utilization as a function of optimization 
strength for European COST 239 Network 
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Table 1.  Lengths of the 95% confidence 
intervals for the mean values of link 
capacity utilization  [%] 
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Fig. 13. Average ratio of link capacity 
utilization as a function of optimization 
strength for Polish PIONIER Network 

service restoration times, discussed in next subsections, are much better when our 
FSR-SLL-VCH algorithm is used. 

4.2   Length of a Backup Lightpath 

Figs. 14-16 show the average lengths of backup lightpaths for all variants of 
optimization strength. The results prove that when using our FSR-SLL-VCH 
optimization, the average length of backup lightpaths is not increased and remains at 
the same level as in case no optimization is performed. This is true regardless of the 
optimization strength. Fast restoration is thus possible. They also show that after 
applying the common a priori optimization, the length of backup lightpaths is often 
far from optimal. Additionally, the stronger the a priori optimization is chosen, the 
longer the backup lightpaths are. For the extreme case, when parallel intra- and 
inter-demand sharing was used, the average backup lightpath length for the a priori
optimization was even about 63%, 53% and 33% worse, compared to the results of 
our FSR-SLL-VCH approach, obtained for U.S. Long-Distance Network, European 
COST 239 Network and Polish PIONIER Network, respectively.  
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Fig. 14. Average length of backup lightpath 
as a function of optimization strength for 
U.S. Long-Distance Network 

Fig. 15. Average length of backup lightpath 
as a function of optimization strength for 
European COST 239 Network 
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Fig. 16.  Average length of backup lightpath as a function of optimization strength for Polish 
PIONIER Network 

4.3   Values of Service Restoration Time at WDM Layer 

Figs. 17-19 show the average values of connection restoration time for all variants of 
optimization strength, while Table 2 gives the lengths of the respective 95% 
confidence intervals. It is worth mentioning that the obtained mean values of 
restoration time for our FSR-SLL-VCH optimization were always similar to the 
shortest ones, achieved when no optimization was performed. When compared to the 
results of the a priori optimization, the difference is remarkable. Under PAL, it took 
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Fig. 17. Average values of service restoration 
time for various optimization strengths (U.S. 
Long-Distance Network) 

Fig. 18. Average values of service restoration 
time for various optimization strengths 
(European COST 239 Network) 

Table 2. Lengths of the 95% confidence 
intervals for the mean values of service 
restoration time  [ms] 

intra- 
demand 

inter-
demand 

intra- & 
inter-

demand 

a priori
optimization 2,40 3,04 2,90 

6,22

6,60 10,02 10,09

7,577,266,47
0

10

20

no optimization intra-demand inter-demand parallel intra- and
inter-demand

optimization strength

S
er

vi
ce

 R
es

to
ra

tio
n 

T
im

e 
[m

s]

'a priori' optimization FSR-SLL-VCH optimization

U
.S

. 
L

on
g-

D
is

ta
nc

e 

FSR-SLL-VCH
optimization 2,69 2,33 2,49 

a priori
optimization 1,86 2,29 2,38 

E
ur

op
ea

n 
C

O
S

T
 

23
9

FSR-SLL-VCH
optimization 2,08 1,38 1,74 

a priori
optimization 0,26 0,67 0,71 

Fig. 19. Average values of service restoration 
time for various optimization strengths (Polish 
PIONIER Network) 

Po
li

sh
 

P
IO

N
IE

R
 

FSR-SLL-VCH
optimization 0,52 0,54 0,66 



Fast Service Restoration Under Shared Protection at Lightpath Level 375

up to 30% less time on average to restore a connection, when our FSR-SLL-VCH 
optimization was used. In particular, for the U.S. Long-Distance Network with the 
parallel intra- and inter-demand sharing applied, it took even about 40% less time 
(24.26 ms against 40,63 ms) to restore a broken connection. 

4.4   Modeling Results for Varying Network Load 

The experiment was performed for the U.S. Long-Distance Network. Regarding the 
strength of optimization, parallel intra- and inter-demand sharing was used. All other 
modeling assumptions were the same as given in Section 3. The goal of modeling was 
to test the properties of the proposed FSR-SLL-VCH optimization under different 
network loads. For that purpose, 10 different sizes of demand sets, given in the 
horizontal axes of Figs. 20-22, were used, changing from 10 to 100% with the step of 
10%. They corresponded to the real average link capacity utilization changing from 
15 to 75%. For instance, the demand set size of 30% meant the attempts to establish 
connections between 30% of all possible pairs of nodes randomly chosen. 
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The results prove that the properties of the proposed FSR-SLL-VCH optimization 
scale well with the increase of the network load. Regardless of the network load: 

− the efficiency of  link capacity utilization was about 19% worse (Fig. 20), 
− the length of backup lightpath was always about 40% shorter (Fig. 21), 
− the values of connection restoration time were about 40% smaller (Fig. 22), 

for our optimization algorithm, compared to the results of the typical a priori routine. 
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The average link capacity utilization per connection decreases for both 
optimization approaches with the increase of the network load (Fig. 20), since the 
greater the network load is, the more backup lightpaths are likely to share a common 
wavelength. 

5   Conclusion 

Obtained results confirm that one cannot obtain the values of both the connection 
restoration time and the link capacity utilization at the minimum level. The proposed 
FSR-SLL-VCH algorithm optimizing the resource utilization, dedicated to protection 
at lightpath level for survivable WDM grooming networks, significantly reduces the 
ratio of link capacity utilization while simultaneously providing fast service 
restoration. It does not increase the lengths of backup lightpaths, which is true 
regardless of the optimization strength. Typical a priori optimization is, however, still 
more capacity effective, but for the price of much greater restoration time values.  
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Abstract. In this paper, we tackle the question of how anycast communication 
can improve survivability of connection-oriented networks. The focus on net-
work survivability arises naturally in the context of growing role of computer 
networks in almost all aspects of human life. We concentrate on connection-
oriented networks e.g. MPLS, ATM for the reason that these techniques can 
provide effective and reliable services in transport network. We take a detailed 
view on anycast communication from the perspective of network survivability. 
A new optimization problem is formulated that is equivalent to the problem of 
joint unicast and anycast flows restoration in connection-oriented networks. 
Next, we propose a heuristic algorithm solving that problem. Finally, we pre-
sent results of exhaustive numerical experiments and a comprehensive discus-
sion on the application of anycast communication in the context of network 
survivability. 

Keywords: survivability, connection-oriented network, anycast. 

1   Introduction 

In this paper we address the problem of survivability in connection-oriented (c-o) 
computer networks. Recently, we can observe that c-o networks like MultiProtocol 
Label Switching (MPLS) gain much attention especially in transport backbone net-
works. This follows from the fact that c-o transmission enables delivering of traffic 
engineering capability and QoS performance including reliability issues [4]. Connec-
tion-oriented network technologies use quite simple and effective method to enable 
network survivability. The main idea of this approach is as follows. Each connection, 
i.e. label switched path (LSP) in MPLS networks, has a working path (route) and a 
recovery (backup) path (route). The working route is used for transmitting of data in 
normal, failure-free state of the network. After a failure of the working path, the failed 
connection is switched to the backup route. In order to provide network survivability 
two methods can be used: protection and restoration. The distinction between protec-
tion and restoration consists in the different time scale in which they operate. Protec-
tion needs preallocated network resources while restoration applies dynamic resource 
establishment. The concept of backup routes can be applied in both protection and 
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restoration methods. For more details on survivability of connection-oriented net-
works refer to [4].

Most of the interest in the context of network survivability networks has been fo-
cused on the unicast traffic [4], [10], [15]. This is obvious, since unicast routing be-
tween a specified pair on network nodes is relatively well understood in best effort 
networks [6]. However, various techniques applying anycast flow paradigm have 
gained much attention in recent years. Anycast is a one-to-one-of-many technique to 
deliver a packet to one of many hosts. It is assumed that the same information is repli-
cated in many servers located in the network. Therefore, the user can select one of 
these servers according to some criteria including also QoS parameters. Conse-
quently, anycast transmission can reduce network traffic and avoid congestion caus-
ing big delays in data delivery. An additional benefit is that replica servers provide 
fault-tolerant service, since users can select another server offering the same data, and 
even a failure of one server does not cause the data to be unreachable. For these two 
reasons, in this paper we apply the anycast transmission to improve network surviv-
ability. 

The main novelty of this paper is that we consider anycasting in connection-
oriented network. Most of previous research on anycasting focuses on pure IP net-
works [1], [2], [5], [6], [12], [14]. Recall that connection-oriented networks (e.g. 
MPLS) offer a number of traffic engineering mechanisms that can significantly im-
prove QoS performance of the network comparing to pure IP networks. There has 
been a lot of papers addressing the offline unicast routing of c-o networks (see [15] 
and the references therein).  

In this work we consider an existing backbone network. In many cases the network 
is in an operational phase and augmenting of its resources (links, capacity, replica 
servers) or changing location of replica servers is not possible in a short time perspec-
tive. Moreover, we assume that to provide network survivability the restoration ap-
proach is applied. Our main goal is to examine how the application of anycast com-
munication improves the network restoration. Therefore, we formulate a new offline 
optimization problem of unicast and anycast connections restoration and propose an 
heuristic algorithm to solve that problem. Similar approach has been proposed in [17], 
however in this work we apply restoration, while in [17] the protection method was 
used. Note that in [20] we considered an online version of the considered problem. To 
verify our approach we report numerous experimental results and present a compre-
hensive discussion on results.  

2   Anycasting in Connection-Oriented Networks 

Anycast is a one-to-one-of-many technique to deliver a packet to one of many hosts. 
Comparing to unicast transmission, in anycasting one of the endpoints of the trans-
mission must be selected among many possible nodes. One of the most well-known 
technologies that applies anycast traffic is Content Delivery Network (CDN). CDN is 
defined as mechanisms to deliver a range of content to end users on behalf of the 
origin Web servers. Information is offloaded from source sites to other content servers 
located in different locations in the network. For each request, CDN tries to find the 
closest server offering the requested Web page. CDN delivers the content from the 
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origin server to the replicas that are much closer to end-users. The set of content 
stored in CDNs servers is selected carefully. Thus, the CDNs’ servers can approach 
the hit ratio of 100%. It means that almost all request to servers are satisfied [14]. 
Other applications of anycast paradigm in computer networks are Domain Name 
Service, Web Service, Distributed Database System, host auto-configuration, overlay 
network, peer-to-peer (P2P) systems, sensor networks [1], [2], [5], [6], [7]. 

Most of previous work on anycasting concentrates on IP networks using connec-
tion-less transmission modeled as bifurcated multicommodity flows [5], [6], [12], 
[14]. Since we consider a connection-oriented network (e.g. MPLS), we model the 
network flow as non-bifurcated multicommodity flow. Consequently, the anycast 
request (demand) must consist of two connections: one from the client to the server 
(upstream) and the second one in the opposite direction (downstream). Upstream 
connection sends user’s requests. Downstream connection carries the requested data. 
Thus, each anycast demand is defined by a following triple: client node, upstream 
bandwidth requirement and downstream bandwidth requirement. In contrast, a unicast 
demand is defined by a following triple: origin node, destination node and bandwidth 
requirement. To establish a unicast demand a path satisfying requested bandwidth and 
connecting origin and destination nodes must be found. Optimization of anycast de-
mands is more complex. The first step is the server selection process. Next, when the 
server node is selected, both paths: upstream and downstream can be calculated 
analogously to unicast approach. However, the main constraint is that both connec-
tions associated with a particular anycast demand must connect the same pair of net-
work nodes and one of these nodes must host a server. 

Two approaches proposed for protection of anycast flows [16], [17] can be also 
applied in the context of restoration. The first method – called backup replica method 
– assumes that after a failure of working route of anycast connection (downstream or 
upstream), the anycast demand can be rerouted to another replica server. In the second 
approach – called backup path – the restoration procedure is the same as in unicast 
communication. A client is assigned permanently to one replica server and after a 
failure of the working route of anycast connection, the backup route connecting the 
same pair of nodes is established.  

3   Problem Formulation 

In this section we will formulate the offline optimization problem of unicast and any-
cast connections restoration. Notice that the consider problem is an enhanced version 
of the UFP (Unsplittable Flow Problem) – well known optimization problem of con-
nection-oriented networks [9], [11]. The UFP is formulated as follows. We are given 
a directed network with arc capacities and a set of connections (requests) defined by 
the triple: origin node, destination node and bandwidth requirement. The objective is 
to find a subset of the connections of maximum total demand with additional con-
straints: each connection can use only one path and the sum of demands crossing the 
arc cannot exceed its capacity. The main novelty of our approach is that we consider 
joint optimization of unicast and anycast flows, while the classical UFP addresses 
only unicast flows. The anycast version of UFP was formulated in [18]. For the re-
mainder of the paper we will refer to the considered problem as UCFP (Unsplittable 
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uniCast and anyCast Flow Problem). To mathematically represent the problem we 
introduce the following notations. 

Sets: 
V - set of vertices representing the network nodes. 
A - set of arcs representing network directed links. 
P - set of connections in the network. A connection can be of two types: unicast 

and anycast. 
PUN - set of unicast connections in the network defined by a following triple: ori-

gin node, destination node and bandwidth requirement.  
PAN - set of anycast connections in the network. A connection can be of two types: 

upstream and downstream. Each anycast connection is defined by a following 
triple: client node, bandwidth requirement, index of associated connection. 

PDS - set of anycast downstream connections in the network. 
PUS - set of anycast upstream connections in the network. 

Πp - the index set of candidate routes (paths) k
pπ  for connection p. Route 0

pπ  is a 

“null” route, i.e. it indicates that connection p is not established. If p is a 

unicast connection, the route k
pπ  connects the origin and destination node of 

p. If p is an anycast upstream connection, route k
pπ connects the client node 

and the server. Finally, if p is an anycast downstream connection, candidate 
routes connect the server and the client node.  

X - set of variables k
px , which are equal to one. X determines the unique set of 

currently selected routes. 

Constants:
k
paδ - equal to1, if arc a belongs to route k realizing connection p; 0 otherwise 

Qp - volume (estimated bandwidth requirement) of connection p
ca - capacity of arc a

τ(p) - index of the connection associated with connection p. If p is a downstream 
connection τ(p) must be an upstream connection and vice versa. 

o(π) - origin node of route π. If π is a “null” route, then o(π)=0.
d(π) - destination node of route π. If π is a “null” route, then d(π)=0. 

Variables: 
k
px - 1 if route k∈Πp is selected for connection p and 0 otherwise. 

fa - flow of arc a.

The UCFP can be formulated as follows 

pp
PpX

QxLF 0
min=

∈
(1)

subject to 
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The objective function (1) is a lost flow (LF). Function LF is as a sum of all de-

mands (connections) that are not established (variable 0
px  is 1). It should be noted that 

also an equivalent objective function can be provided, in which we maximize the total 
volume of established connections. Condition (2) states that the each connection can 
use only one route or is not established. Therefore, we index the subscript of variable 

k
px  starting from 0, i.e. variable 0

px  indicates whether or not connection p is estab-

lished. If it is established, 0
px =0 and one of variables k

px  (k>0), which is equal to 1, 

indicates the selected path. Constraint (3) ensures that decision variables are binary 
ones. (4) is a definition of an arc flow. Inequality (5) denotes the capacity constraint. 
Equation (6) guarantees that two routes associated with the same anycast demand 
connect the same pair of nodes. Notice that constraint (6) must be satisfied only for 
anycast connections. Moreover, (6) assures that if upstream connection is not estab-

lished ( 0
px =0 and the “null” route is selected) the downstream connection of the same 

anycast demand is not established, and vice versa. Finally, (7) is a definition of a set X
called a selection that includes all variables x, which are equal to 1. Each selection 
denotes for each connection either the selected route or indicates that the particular 
connection is not established. Note, that we call a connection p established in selec-

tion X if Xxp ∉0 .

4   Algorithm 

Since of the objective of network restoration is relatively short decision time, we 
propose to solve the UCFP problem by a simple greedy algorithm (GA). The unicast 
version of GA proceeds all connections in a one pass and either allocates the  
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processed request to the shortest path or rejects the request if such a feasible path does 
not exist, i.e. origin and destination node of the connection do not belong to the same 
component of considered graph [9]. It should be noted that modification of GA called 
bounded greedy algorithm (BGA) and careful BGA (cBGA) were proposed in [9], 
[11]. Online algorithms can also solve the UFP. Several such algorithms were devel-
oped in the context of dynamic routing in MPLS networks [3], [10]. MPLS supports 
the explicit mode, which enables the source node of the LSP to calculate the path. The 
main goal of dynamic routing is to minimize the number of rejected calls or to mini-
mize the volume of rejected calls. The most common approach to dynamic routing is 
the shortest path first (SPF) algorithm based on an administrative weight (metric). In 
[18] we proposed a GA for anycast flows. 

Now, we present how to modify unicast greedy algorithm to enable joint optimiza-
tion of anycast and unicast flows. We refer to this new algorithm as CGA (uniCast 
and anyCast GA). CGA analyzes all requests (unicast and anycast) in a one pass. 
Requests can be sorted accordingly to a selected criterion (e.g. bandwidth require-
ment). We apply some temporary variables in both algorithms. Set H is a selection 
including decision variables x equal to 1. Set B includes indices of connections. Op-
erator first(B) returns the index of the first connection in set B. Operator sort(H) re-
turns indexes of connections included in H ordered according to their paths’ length 
given by the metric CSPF [3] starting with the longest. We select CSPF metric due to 
its effectiveness in many dynamic routing problems.  

Operator USP(H,i) returns either the index of the shortest path calculated according 
to selected metric or 0, if a feasible route does not exist for connection i. We apply 
Dijkstra’s algorithm, however any Shortest Path First algorithm can be used. To fa-
cilitate the process we construct a residual network, i.e. we remove from the network 
all arcs that have less residual capacity than volume of connection i. If in the residual 
network none feasible path exists, the demand is rejected because there are not 
enough resources of residual capacity to establish connection i.

Operator ASP(H,i,j) returns either the pair of indices of shortest paths for down-
stream and upstream connection or a pair of zeros, if a pair of feasible routes does not 
exist for connections i and j associated with the same anycast demand. To find a pair 
of shortest paths of downstream and upstream connections all replica servers are 
taken into account. In particular, the residual network is constructed in analogous way 
as shown above in the context of USP operator. Then, for each server node the short-
est path of downstream connection and the shortest path of upstream connection are 
calculated applying Dijkstra’s algorithm. Next, the sum of these two paths’ lengths is 
assigned to the considered server node. Finally, we select a server and a pair of paths 
for which the aggregate length is the smallest. 

Algorithm CGA 
Step 1.  Let H denote an initial solution, in which none connection is established. Let 
B:=sort(PUN∪PDS).
Step 2.  Set i = first(B) and calculate the metric of each arc a∈A.
If i∈PUN, find the shortest route of connection i according to selected metric 

k = USP(H,i). Set { }( ) { }k
ii xxHH ∪−= 0 . Go to step 3. 
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If i∈PAN, find the pair of shortest routes of connections i and τ(i) according to selected 

metric {d,u} = ASP(H,i,τ(i)). Set { }( ) { }d
ii xxHH ∪−= 0  and { }( ) { }u

ii xxHH )(
0

)( ττ ∪−= .

Go to step 3. 
Step 3.  Set B = B – {i}. If B = ∅, then stop the algorithm. Otherwise go to step 2. 

The CGA algorithm is a modification of the classical greedy algorithm developed 
for unicast flows. Complexity of the algorithm depends on the number of connections. 
The most time consuming operations is calculation of shortest path in operator USP
and ASP. Therefore, algorithm is relatively simple. This is motivated by the fact that 
the restoration process must be performed robustly and quickly. Therefore, relatively 
low complexity of the algorithm can enable the application of CGA algorithm in 
online restoration. 

5   Results 

Algorithm CGA was coded in C++. The network on which we conduct our experi-
ment consists of 36 nodes and 144 directed links (Fig. 1). The bold lines represent 
links of size 96 units while other lines are links of size 48 units. The link capacities 
were chosen to model capacity ratio of OC-48 circuits. During simulations, the link 
capacities were scaled by a factor 100 to enable establishing of thousands of connec-
tions. Since we consider an existing backbone network, which is in an operational 
phase and the number of replica servers is constant. However, to verify performance 
of our approach for various cases we test 12 various servers location scenarios (Table 
1). The number of servers varies from 2 to 4. For each of server location we test 13 
different demand patterns consisting of 180 anycast demands (360 anycast connec-
tions) and 2500 unicast connections. In the simulation we use the anycast ratio (AR) 
parameter defined as the ratio of the anycast demands’ bandwidth requirement to the 
bandwidth requirement of all demands issued in the network. Demand patterns are 
generated randomly with various values of AR. 

The scenario of numerical experiments is as follows. First we calculate working 
routes of all connections (anycast and unicast) applying a modified version of algo-
rithm FD_RCL proposed in [19]. The FD_RCL algorithm is based on the flow devia-
tion method applied to many optimization problems [8], [13], [15]. However, it ap-
plies a new objective function RCL defined in [19]. According to results presented in 
[19], the FD_RCL algorithm provides the best assignment of working routes in terms 
of network survivability comparing to other tested heuristics. The modification of the 
algorithm consists in joint optimization of unicast and anycast connections similarly 
to the algorithm published in [17]. Next, we simulate a failure of each link and per-
form the network restoration process. According to [4] the single link cut is the most 
probable failure in modern networks. Apparently, also other failure scenarios (node 
failures, multiple failures) could be considered, however we focus on the most com-
mon case. To run the restoration of anycast flows we can use the CGA algorithm i.e. 
the backup replica method. For comparison we implement backup path restoration 
method, which applies the greedy algorithm deployed for unicast flows. For easy of 
reference we will call this algorithm as UGA (Unicast Greedy Algorithm). The UGA 
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algorithm does not use the anycast communication. Unicast flows are restored using 
algorithm UGA - the traditional greedy algorithm. For each link we repeat the same 
procedure, i.e. the link is pruned and the restoration of all connection that traversed 
the failed link is made to obtain the amount of un-restored lost flow. Finally, we com-
pute the aggregate lost flow, which is a sum over all links failures. Note that both 
kinds of flows: unicast and anycast are considered in the calculation of lost flow. In 
the case of anycast request, if one of anycast connections (downstream or upstream) is 
broken and not restored, we add to the lost flow bandwidth requirement of both con-
nections.  
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Fig. 1. Topology of test network 

Table 1. Location of replica servers – simulation cases 

Number 
of servers 

Location of 
servers

Number 
of servers 

Location of 
servers

Number 
of servers 

Location of 
servers

2 5, 23 3 5, 23, 30 4 5, 9, 23, 30 
2 5, 25 3 5, 25, 30 4 5, 9, 25, 30 
2 7, 23 3 7, 14, 23 4 7, 14, 23, 30 
2 7, 25 3 7, 14, 25 4 7, 14, 25, 30 

To present the results we define the AVLU (Average Link Utilization) parameter 
as the average network saturation, i.e. AVLU is the sum of all links flow divided by 
the sum of all links capacity. The percentage difference between backup replica 
method and backup path method we calculate in the following way 

diff = (res_bp – res_br) / res_bp (8)

where res_bp denotes the aggregate lost flow of backup path restoration and res_br 
denotes aggregate lost flow of backup replica restoration. Notice that the value of diff
greater than 0 means that the backup replica restoration yielded lower value of lost 
flow than the backup path restoration. 

On Fig 2 we report the average percentage difference between backup path and 
backup replica restoration as a function of server number. Fig. 3 presents detailed 
results of the difference between both methods as a function of the anycast ratio. 
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Fig. 2. Average percentage difference between backup replica and backup path restoration 
methods as a function of server number 
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Fig. 3. Average percentage difference between backup replica and backup path restoration 
methods as a function of anycast ratio for various number of servers 

Figs. 4-6 show the percentage difference between backup replica and backup path 
restoration methods as a function of the anycast ratio for various locations of 2, 3 and 
4 servers, respectively. 

From Figs. 2-6, we observe that applying the backup replica restoration method 
yields significant improvement comparing to the backup path restoration. The average 
gap between two methods overall all 156 tests is almost 33%. In particular, the analy-
sis of results shows that the percentage difference between both methods decreases 
with the number of servers. Note that less servers in the network means longer – in 
terms of hops – paths for anycast connections. Moreover, these relatively few servers 
are more congested. In the case of a link failure, especially close to the server, other 
links adjacent to the server can become the bottleneck of the restoration. Recall that in 
the backup path restoration anycast connections are assigned permanently to one 
replica server, while the backup replica restoration can select another replica server. 
Consequently, when the number of servers increases, the difference between two 
restoration approaches decreases.  

Another important observation is that the gap between backup replica and backup 
path methods increases with the anycast ratio. It is evident that more anycast traffic in 
the network implies more congested links adjacent to replica servers. As noted above, 
the backup replica outperforms the backup path method particularly in such cases. 



 Anycast Communication 387

0%

20%

40%

60%

80%

0.07 0.13 0.19 0.27 0.31 0.35 0.41

Anycast Ratio

P
er

ce
nt

ag
e 

di
ff

er
en

ce
 

be
tw

ee
n 

ba
ck

up
 r

ep
lic

a 
an

d 
ba

ck
up

 p
at

h
5,23

5,25

7,23

7,25

Fig. 4. Percentage difference between backup replica and backup path restoration methods as a 
function of anycast ratio for various locations of 2 servers 
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Fig. 5. Percentage difference between backup replica and backup path restoration methods as a 
function of anycast ratio for various locations of 3 servers 

0%

20%

40%

60%

80%

0.07 0.13 0.19 0.27 0.31 0.35 0.41

Anycast Ratio

P
er

ce
nt

ag
e 

di
ffe

re
nc

e 
be

tw
ee

n 
ba

ck
up

 r
ep

lic
a 

an
d 

ba
ck

up
 p

at
h

5,9,23,30

5,9,25,30

7,14,23,30

7,14,25,30

Fig. 6. Percentage difference between backup replica and backup path restoration methods as a 
function of anycast ratio for various locations of 4 servers 

Results presented on Figs. 4-6 suggest additionally that the gap between analyzed 
methods depends on the location of network servers, however the differences are not 
significant. 

Fig. 7 shows how the number of servers influences the amount of lost flow. Each 
bar in the graph represents one demand pattern. The x-axis is the anycast ratio and the 
y-axis is the normalized lost flow calculated in the following way. The same demand 
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pattern was run using the backup replica restoration for 2, 3 and 4 servers in the net-
work. Next, obtained values of lost flow were normalized proportionally to make 
100% in sum. We can observe that with the increase of anycast ratio, relatively less 
flow is lost when the number of servers grows.  
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Fig. 7. Normalized lost flow of backup replica as a function of anycast ratio 

6   Conclusion 

In this paper, we have proposed to apply anycast communication in order to improve 
network survivability. We have formulated a new optimization problem UCFP, which 
is equivalent to the joint restoration of unicast and anycast flows in connection-
oriented networks. The UCFP problem is motivated by service providers’ needs for 
fast deployment of bandwidth guaranteed services enabling fast and effective distribu-
tion of popular content over Internet. A simple heuristic algorithm CGA has been 
presented to solve the UCFP problem. The CGA algorithm enables a new restoration 
approach called backup replica. Next, we run extensive simulations to evaluate our 
approach against traditional unicast restoration. The experiment confirms that the 
backup replica restoration method is more efficient then the backup path method 
developed for restoration of unicast flows. The gap between both methods increases 
with the ratio of anycast traffic in the network. Results of our work can be applied for 
optimization of Content Delivery Networks located in connection-oriented environ-
ment, e.g. MPLS network. 
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Abstract. In an all-IP environment, the concept of context transfer is used to 
provide seamless secure handovers between different administrative domains. 
However, the utilization of context transfer arises some privacy issues 
concerning the location and movement of users roaming between domains. In 
this paper we elaborate on these privacy issues and propose an alternative 
context transfer protocol that protects user’s location privacy as well. In 
addition, assuming that the context carries a user identity in the form of a 
Network Access Identifier (NAI), we show how the employment of temporary 
NAIs can further increase the privacy of our scheme. 

Keywords: Privacy, Context Transfer, NAI, all-IP networks, secure handover. 

1   Introduction 

Today, the uninterrupted continuation of the received services during handover 
between networks with different access technologies still remains an open issue. In 
order to have fast, secure handovers in such an all-IP terrain new methods were 
recently proposed, like OIRPMSA [1], MPA [2] and Context Transfer [3]. As 
discussed in [4], while these methods do succeed in minimizing the disruption caused 
by security related delays, it seems that little has been done to protect the end users 
privacy as well. 

Whereas a lot of work has been done in privacy and location privacy in general, the 
authors are not aware of any previous work preserving location privacy in methods 
offering fast secure handovers in all-IP based networks. In this work we focus on the 
Context Transfer solution. We discuss and highlight the privacy issues arising from 
the employment of the Context Transfer Protocol (CTP) [3] and propose a solution 
towards solving these problems. We further extent our solution based on the 
observation that the NAI [5] is a suitable type of identity for networks that span across 
multiple administration domains. Since this applies to our case we use temporary 
NAIs as context’s identity in order to increase the level of user’s privacy. The result 
of our work is that the decision for user’s identity and location disclosure is no longer 
left to the good will and intensions of the visiting networks and the user is not forced 
to trust the foreign domains but only his home domain with which he has signed a 
contract. The rest of this paper is structured as follows. In Section 2, some privacy 
issues are pointed out from the current functioning of the CTP. Section 3 presents the 
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proposed solution to these privacy issues based on two concepts: Mobile Node (MN) 
submitted context and frequent NAI change. Section 4 provides a discussion about 
prerequisites and deployment issues for our protocol. Last section offers concluding 
thoughts and future directions for this work. 

2   The Problem: Privacy Issues in Context Transfer Protocol 

The way the CTP operates, as defined in the RFC 4067, arises some privacy issues. 
These issues concern primarily the end user and more specifically his location and 
movement between different administrative domains. The first observation has to do 
with the inner workings of the protocol itself. Every time a handover occurs, the 
previous Access Router (pAR) uses the CTP to send various context data blocks to 
the new Access Router (nAR). That is, for every handover the pAR and the nAR 
know where the user came from and where he is going. When these two ARs belong 
to the same administrative domain it goes without saying that the domain is aware of 
the movement of the MN inside its own network. However, when the two ARs belong 
to different administrative domains there is no reason for the pAR to know which the 
nAR is and the opposite. To sum up, with the use of the CTP for seamless handovers, 
every administrative domain is aware of the previous and the next administrative 
domain of the MN, without excluding itself. This means that every domain can track a 
part of the user’s movement. Continuing from the last conclusion, the user’s 
movement can be completely tracked, given that some administrative domains 
collude. Note, that this does not imply that all administrative domains in the path of 
the user movement are required to collude for such an attack, but every second 
domain in that path. 

Another aspect of the location privacy problem when the CTP is in place is the 
type of the identifier used by the user/MN during the protocol negotiation to 
authenticate to the new administrative domain. The utilization of a static identifier 
like the MAC address of the MN or a globally used username of the user simplifies 
the work of a malicious passive observer. An obvious choice for all-IP networks that 
belong to different administrative domains is the use of a NAI. However, if the 
administrative domains collude, they can track the whole movement of the user only 
by the observation of the use of this static NAI. Furthermore, even when 
administrative domains do not collude there can be a location privacy breach, since 
every single domain can recognize an old user that returns to it. It is thus, more than 
obvious, that systems’ logistic files can be anytime processed to disclose information 
about the whole history of movements of a specific user. 

3   The Proposed Solution 

The proposed solution protects the location privacy of users roaming between 
different administrative domains utilising the CTP to receive uninterruptible services 
during handover. Our solution is twofold and it is proposed that: (a) the context 
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should be submitted by the MN, and (b) there should be a frequent NAI change. The 
basic idea behind our scheme is that the user’s sensitive information should only be 
known to the user himself and his home domain and no-one else, including the 
visiting domains. This is very important since the user has agreed and signed only one 
subscription contract; with his home domain. 

3.1   Mobile Node Submitted Context 

As it is stated in RFC 4067, the context is transferred between layer-3 entities from 
the old network domain to the new network domain. This way, a part of the MN 
user’s route can be tracked. As already stated this is the case of a single domain 
tracking the movement of the user; if domains collude, then the full movement of the 
user can be tracked simply by using the information revealed by the CTP. One 
possible solution to avoid such problems is to have the MN submitting its own 
context to the network it is moving to. The complete abstract protocol steps are as 
follows: Step 1 - The MN establishes a secure session with the AR of the new domain. 
This secure session must have the following properties: (a) it must be encrypted and 
(b) the AR must be authenticated to the MN. Step 2 - The MN sends the context over 
the previously established protected channel. Step 3 - The AR authenticates the MN 
and re-establishes the services based on the context. It is also assumed that the current 
domain has established some kind of trust relationships beforehand with the home 
domain. This way the authentication is processed locally based on an authentication 
token located in the context, which is digitally signed by the home domain. 

The above procedure is the equivalent of a PEAP [6] or an EAP-TTLS [7] 
authentication and key establishment method using the context as user authentication 
means. The first phase of the PEAP or EAP-TTLS method is followed as is, e.g. a 
secure session is established with the use of the digital certificate of the AR. In the 
second stage the authentication of the user is taking place with the utilization of the 
credentials contained in the context. The key establishment phase could also be 
benefited by the context transfer since the context can contain security parameters i.e. 
cryptographic keys, supported suites, tokens, etc. The proposed method can be used in 
either a reactive or proactive scenario. In cases where a high QoS must be preserved, 
the aforementioned procedure could be executed proactively, that is before the MN 
actually moves to the new administrative domain. This situation is comparable to the 
pre-authentication procedure exercised in IEEE 802.11 or 802.16 networks. An 
example of a context transmitted by the MN is shown in Fig. 1. When the MN moves 
towards P3 the handover procedure starts. The MN establishes a secure channel with 
the nAR and through this channel transfers the context. As it can be easily noticed, the 
ARs do not play any role in the context transfer procedure and there is no 
communication between them. Also, they are not aware of each other in any way. One 
potential drawback of our method is the possible degradation of service during the 
handover process; however, this is left to be proved in a future work. The factors that 
lead to this are the use of asymmetric cryptography and the increased number of 
messages during the whole procedure.  
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Fig. 1. MN submitted context

3.2   Frequent NAI Change 

In this heterogeneous environment one way to identify the users is the use of NAI. Of 
course, the NAI can also be utilised in conjunction with the CTP. When the NAI 
concept is employed in the proposed way (MN submits the context) then the current 
domain or some colluding domains still can track the location of the user simply by 
observing the transmission of NAIs. More specifically, the current domain can always 
be aware when a single user was present in its network or when a user returns to it. 
When the domains collude things get worse since they can observe the exact route of 
a single user. The solution is based on the use of temporary NAIs and the frequent 
change of them. Thus: (a) The home domain is the only one that has the 
correspondence between the true identity of the user and the NAI assigned to him, (b) 
when a context is created for the user, it contains a temporary NAI. This temporary 
NAI uses as user_id a random unused string, which the home domain connects with 
the true identity of the user, and as domain_id the assigned domain_id. Each 
temporary user_id is used once for every single domain by one user at a time. When 
the user handovers to another domain (either new or previously visited) he must use a 
different user_id. The reuse of a temporary user_id by another user is not forbidden 
since the home domain is also aware of the date and time each user is using it. 
Therefore, the only sensitive information about the user that is revealed to foreign 
domains is the home domain of the user, and (c) after the completion of the handover 
of the MN to a new domain, the MN is using a secure channel (like a TTLS session) 
to contact its home domain and obtain a new temporary NAI. This way, when the user 
returns to a previous visited domain, the domain cannot recognize him. 

Even if the correspondence between the true identity of the user and his NAI or 
any temporary NAI is revealed by accident or other reason, the user’s past routes 
cannot be revealed without the help of his home domain. The obvious drawback of 
this method is the increase in the signaling between the domains. However, this is 
done after the completion of the handover and therefore has no real effect in the QoS 
perceived by the user during the handover. In Fig. 2 a message sequence diagram of 
the overall proposed solution is presented. The MN has an existing session with the 
pAR; when it wants to handover to the nAR it first establishes (proactively or 
reactively) a secure session with it. Then, through this secure session, it transfers the 
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context that will allow the MN to authenticate, establish session keys and re-establish 
the services it already uses. When the handover procedure is finished, the MN should 
contact its home domain in order to obtain some new credentials (for example a new 
temporary NAI) that will be used in its next handover. 

Fig. 2. Message sequence of our solution

4   Discussion 

From the trust requirements point of view, the proposed solution has some 
prerequisites that are analogous to those of CTP. More specifically, CTP requires that 
trust relationships exist among the ARs and between the MN and each of the ARs 
(pAR and nAR). In our case, each AR should have trust relationships with the home 
domain of the roaming MN; since the MN also has trust relationships with its home 
domain, new trust relationships between the MN and each AR can be established on-
the-fly. An important factor concerning the wide deployment of a protocol is the 
number of changes required in the already installed infrastructure. Taken into account 
the situation as it is today, our protocol requires a reasonable number of such changes 
which are comparable to those required for the deployment of the CTP. More 
specifically, in CTP the ARs should be able to transfer the context among them and 
interpret the contents of the context; the MN should also implement the CTP in order 
to be able to request the transfer of the context. In our proposal the ARs should only 
be able to interpret the contents of the context while the MN should be able to handle 
the context which it possesses according to the proposed protocol. 

Another point of consideration is the protection of the context itself. Since in the 
proposed protocol the context is carried by the MN, actions must be taken so that the 
context cannot be altered by the user unnoticed. This implies that there should be a 
kind of digital signature in place ensuring the integrity of the transmitted context. The 
encryption of the context while stored in the MN is not a strict requirement since the 
information contained in it is already known to the user. However, having in mind 
that the MN is a portable device and thus it is easy to get lost or stolen, some care to 
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prevent tampering, unauthorized use, or fraud could be taken. One final remark about 
the context is its expiration. The time interval of expiration should be neither too 
large, containing expired information, nor too small, causing excessive signaling 
among the administrative domains. What is obvious for our protocol is that when the 
MN moves to a new domain the context is renewed since a new temporary NAI is 
requested. In any case, the expiration interval can be set by the network administrators 
and the current point of attachment (some AR) of the MN can warn it that its context 
has expired or is about to expire. 

5   Conclusions 

We have presented a novel solution that preserves user’s location privacy when using 
the CTP which is currently employed by the state of the art methods for seamless 
secure handovers between different administrative domains. We showed that the 
standard way the protocol behaves arises some privacy issues and proposed an 
alternative protocol that alleviates these problems. Moreover, we have proposed how 
the use of the context in conjunction with a NAI can further enhance user’s privacy. 
Part of our future work is to measure the delays incurred by our protocol. Preliminary 
analysis discloses that these times are expected to be tolerable with medium-end 
devices, achieving seamless handovers even to very demanding applications. 
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Abstract. Current multipath protocols for Multi-Hop Wireless Networks 
(MWNs) use hop-count as the default route selection criteria.  Route selection 
should also consider network and link conditions. We propose a network-
environment-aware trust-based route selection framework for MWNs that 
makes informed and adaptive route-selection decisions. A node quantifies trust 
values for its neighboring nodes and for the routes that pass through it. The trust 
metric adjusts to varying network conditions and quick convergence of the 
protocol implies it works well in mobility scenarios. Glomosim simulations 
demonstrate throughput improvement over conventional multipath protocols 
under congestion, link failure and route unreliability scenarios. 

Keywords: AOMDV, Multipath, Routing, Security, Trust. 

1   Introduction 

Ad-hoc On-demand Multipath Distance Vector (AOMDV) [1] and AODVM [3] 
routing are multipath variants of the well-known AODV protocol [2] for Mobile 
Multi-Hop Wireless Networks (MWNs). Route selection may be affected by 
congestion, presence of selfish (or malicious) nodes, and other adverse network or 
physical conditions. Additional route information may enhance probability of packets 
reaching destination. In existing multipath protocols, if nodes could evaluate 
confidence on available routes (estimate route reliability due to physical and network 
conditions), make trusted route selection decisions, and dynamically switch traffic 
across different available routes, data delivery robustness would be enhanced. 

This paper presents a framework for MWN nodes to evaluate route conditions and 
provides metrics to make informed multipath routing decisions. Our goal is to quickly 
detect any effects on data transfer, attributable to malicious nodes or other adverse 
conditions in a route, and to take corrective actions (e.g., use alternate routes). In our 
model, a node quantifies trust values for its neighboring nodes and for the routes that 
pass through it. The trust metrics adjust to varying network conditions; quick protocol 
convergence implies it works well in mobility scenarios.  

* Research supported in part by U.S. Air Force Research Laboratory Grant No. 200821J. 
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Recent trust models for node dependability, reliability and security in P2P systems 
are summarized by Li et al. [5]. Expensive peer-node promiscuous monitoring for 
behavior assessment, significant in all existing models [9, 6, 7, 8], is minimized in our 
framework by enhancing node accountability for data forwarding cooperation. Overall 
route-performance rather than individual node-misbehavior detection is our focus. No 
extra control overhead for trust computation is introduced; convergence time for our 
framework is the same as that of AOMDV. Since it assumes presence of cryptographic 
protocols, information will not be compromised when our protocol is executing in the 
presence of malicious nodes. We do not distinguish between packets dropped due to 
malicious or selfish behavior and due to congestion. All these are inhibitive towards 
efficient data transfer and worthy of loss of trust. Nodes have unique non-forgeable IDs. 
Links are bidirectional; link costs/capacities maybe directionally different and are 
estimated through well known techniques (e.g., [10]).  Trust is non-transitive, i.e., Txy 
Tyx. Downstream is towards destination and upstream is towards source. Source and 
destination nodes are assumed to be non-malicious. Trust is computed on a continuous 
scale of 0 to 1.  

2   Technique  

In AODV, the source node broadcasts a Route Request (RREQ) packet which is in turn 
re-broadcasted by the nodes’ neighbors until the sought route is discovered. Upon 
receiving an RREQ, the destination node or an intermediate node with a ‘fresh enough’ 
route to the destination, unicasts a Route Reply (RREP) packet back to the source node.
AODV also uses Route Error (RERR) and Route Reply Acknowledgement (RREP-
ACK) control packets for route management. AOMDV discovers link-disjoint or node-
disjoint multi-paths between pairs of nodes. 

In our model a node maintains two trust values, one for routes passing through it and 
another for its one-hop neighbors – Route Trust: measure of reliability of packets 
reaching the destination if forwarded on a particular route, computed by each node for 
all routes in routing table; Node Trust: measure of confidence on one-hop neighbors that 
they accurately assess and report downstream route conditions. Node trust is initialized 
at 1 for destination and 0.5 for all other participating nodes. Initial route trust is 
formalized by Effective Link Capacity (ELC) and Effective Route Capacity (ERC) 
values. ELC is an indicator of the traffic that can be scheduled on the link for a 
particular route/flow. ERC is the effective capacity of the route from an intermediate 
node to the destination. It factors in the ELCs computed at each intermediate node. An 
ERC value corresponding to a route at a node can thus be analogous to that node’s trust 
on that route downstream. Subsequent updates to node and route trusts are 
interdependent. Route trust is recursively computed by each node starting at the 
destination and moving upstream, taking care of route divergences and convergences. 
At each hop, a node’s assessment of its downstream reporting neighbor (i.e., node trust) 
is factored into the route trust. In turn, the difference between predicted route trust and 
the eventual route performance governs an upstream node’s trust (node trust) on its 
downstream neighbor. Thus nodes are accountable for providing an accurate assessment 
of route conditions.  
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Additions/modifications to AOMDV are made for piggy-backing ELC and ERC 
values in the RREP packets upstream and maintaining trust details for all routes in 
each node’s routing table. The details are as follows: 

• Each node maintains an additional data structure called the Neighbors’ Trust Table. 
It contains neighboring node IDs, and corresponding node trust values. 

• RREP packets have an additional route trust field and routing tables have a route 
trust entry for every destination as well. Upon receiving an RREP, a node caches 
the route trust sent by the downstream node.  The node then reevaluates its own 
trust on the route downstream, updates the corresponding route trust entry in its 
routing table, updates the route trust field in the RREP packet and forwards it 
upstream.  

• A Type field in the packet header (values 0-3) in AOMDV identifies the control 
packet type (RREQ, RREP, RERR and RREP-ACK). We introduce two new control 
packets, the Query (QRY: Type value 4) and the Query-Acknowledgement (QRY-
ACK: Type value 5) packets. Route tables have a Query Flag bit set when a QRY-
ACK is expected in response to a QRY. These packets contain encrypted checksum, 
computed over the entire packet by the packet creator, ensuring tamper-detection. 

Fig. 1. Reporting of Route Trust Values Fig. 2. Simulation Scenario 

A node wanting to reassess its route trust whenever appropriate sends a QRY to the 
destination. The destination sends back a QRY-ACK containing the received packet 
count since transmission of the last QRY-ACK. The QRY initiator and the intermediate 
nodes forwarding the QRY-ACK re-compute route trusts using their ERC estimates and 
the ratio of data packets reaching the destination to data packets forwarded by them.  

If multiple QRY or QRY-ACK packets are lost along a route, then the route trust 
would automatically decrease. We evaluate this in Sec. 3 through simulations. The node 
trust on the immediate downstream node is computed using the ratio of actual data rate 
achieved to the data rate promised by the downstream node.  

Nodes recursively inform upstream neighbors of any changes in route trusts 
downstream, plugging in their own assessment of downstream-route-trust at each hop. 
Accuracy of such updates factors in re-evaluating node trusts on downstream neighbors 
in turn. For example, precise reporting of decreased route trusts due to congestion does 
not reduce node trust on the reporting downstream node. A Two-hop Reporting scheme 
employing AODV’s Localized Repair feature is used for detecting bogus congestion 
reporting and silent discarding of QRY-ACK packets by malicious/selfish nodes. 
Assume that node Y (in Fig.1) is malicious. In the two-hop reporting scheme, Z sends 
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QRY-ACK to both Y and X using the localized repair feature. Node X should thus 
receive two copies of the packet which it can compare.

If node Y claims route-congestion for a time more than a threshold or when there is 
ambiguity between reports sent by the two downstream nodes, then all the routes with 
next hop Y are invalidated and purged from the routing table and RERR messages are 
sent to the destination. The node trust on Y would be made 0. 

3   Performance Evaluation and Discussion 

Packet Delivery Ratio and Trust Convergence latency were evaluated through 
Glomosim-2.02 simulations using the topology of Fig. 2 over a field size of 100m X 
100m. This is an enhanced version of the network topologies that were used by Das et 
al. [1] and Yuan et al. [11]. The simulation was run for 150 seconds. Each node has a 
transmission range of 30 Meters using a Free-Space propagation-path loss model. 
Constant Bit Rate (CBR) traffic at 512 Bytes per second (bps) with an inter-departure 
time of 5 ms was injected between the source node 0 and the destination node 3 from 
the beginning till the end of the simulation. 

To simulate general congestion in the network, we introduced an additional 1024 bps 
CBR traffic at the links [2, 3], [7, 8] and [4, 5] during the interval of 10-30S. Further, 
localized congestion was created through 2048 bps CBR traffic across the links [2, 3] 
and [4, 5] during 30-40S; across [2, 3] during 60-70S; across [7, 8] during 75-85S; and 
across [4, 5] during 85-99S. This emulated a variety of scenarios: simultaneous 
congestion on two routes, congestion on one route, different times the congestion eases, 
etc. Finally, nodes were failed during the following time intervals: Node 1:100-125S, 
Node 7:115-125S, Node 4:130-140S. This was done to study the adaptability of our 
protocol and achieve a fine grained comparison with AOMDV.  

Route selection was weighted round robin. Source node reevaluated trust metrics by 
sending QRY packets at time intervals dictated by the already computed route trust 
values. For trust between 0.5-0.8, querying frequency was every 100 packets; for trust > 
0.8, it was every 200 packets. The destination node sent back QRY-ACK packets to all 
the upstream nodes. Results were compared with native AOMDV. Trust values and 
Packet Delivery Ratio for each path (via nodes 1, 7 and 4) were evaluated. Results for 
path via Node 1 are reported; similar results were obtained for other paths.  

As seen from the Figures 3a and 4, during the initial interval, 10-30S, local 
congestion simulated in all the available paths considerably affected the overall packet 
delivery ratio. As a consequence the route trust fluctuated during this time frame. Since 
there was no alternate path with better route trust, data packets were sent over all the 
paths and hence the overall protocol suffered due to this congestion. During the interval 
60-70S, only the route via node 1 suffered congestion resulting in packet loss. The trust 
metric re-computation latency (time interval between the onset of congestion and the 
time at which the source obtains the QRY reply) was approximately 1.5 sec. This 
number was an averaged output of several test runs. Since the route trust on route via 
node 1 was greater than 0.8 before 60S, the QRY packets were sent out only after 200 
data packets, and hence the trust convergence interval was large as indicated by 
pointer 1 in Fig. 3b. Once the congestion was realized at the source, the route trust on 
node 1 was decreased and the traffic was diverted through alternate paths via nodes 4 
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and 7. Thus, the route trust follows the packet delivery ratio computed using the QRY-
ACK packet(s) from the destination. During this 60-70S interval, 5 data packets were 
sent through the congested route periodically to check if the congestion got cleared. 
Thus when the localized congestion between nodes 2 and 3 subsided after 70S, the 
source was able to reassess the trust within the next 0.5 sec. This was because of the 
reduced QRY request frequency that was set to be every 20 data packets. Thus, the trust 
convergence interval was less as indicated by pointer 2 in Fig. 3b. In this duration, 
traffic was redirected through alternate paths and hence the overall packet delivery ratio 
was not affected as can be seen from the overall packet delivery ratio in Fig. 4. 
Likewise, when the trust metrics were maintained in between 0.5-0.8, the trust 
convergence interval was approximately 1 sec. This could be visualized during the 30-
31st sec in Fig. 3b. Similar localized congestion, reduction in route trust and diversion of 
data through highly trusted routes were monitored during 75-85S and 85-99S for the 
alternate paths and were found to show strict resemblance to the trust convergence 
latencies observed in Fig. 3b. 

Fig. 3a. Packets Sent/Received Vs Time (For Next Hop Node 1) 

Fig. 3b. Trust & Packet Delivery Ratio Vs Time (For Next Hop Node 1)

The same simulation setup was also used to run two variants of AOMDV: round 
robin route selection and using a single route. Comparison of our scheme’s overall 
packet delivery ratio with AOMDV variants (Fig. 4) shows that AOMDV (round 
robin) suffered approximately 50% throughput decline with downstream route 
congestion; single route AOMDV was even worse. Additionally, our protocol quickly 
sensed node failures and diverted traffic via alternate paths as against AOMDV that  
kept attempting to send traffic via routes with failed nodes. The results assure the 



 Environment-Aware Trusted Data Delivery in Multipath Wireless Protocols 401 

0,0

0,2

0,4

0,6

0,8

1,0

0 20 40 60 80 100 120 140
Time in Secs

P
ac

ke
t 

D
el

iv
er

y 
R

at
io

Overall Packet Delivery Ratio - Our Scheme
Overall Packet Delivery Ratio - AOMDV With Round Robin
Overall Packet Delivery Ratio - AOMDV with Single Path Selectio

Fig. 4. Throughput Comparison 

effectiveness of our proposal when adapted to multipath protocols. It is a self learning 
scheme which adapts to environment conditions. 
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Abstract. The lack of control inherent to digital content has been put on the 
spotlight by copyright infringement coupled with massive content online 
distribution (e.g., Peer-to-Peer). Digital Rights Management seems to be the 
solution to counter this problem advocating the use of cryptography and other 
related security mechanisms to protect digital content and to associate rights 
with it which determine how, when and by whom it can be consumed. The 
rapid growth of digital multimedia technologies brings tremendous attention to 
the field of digital watermarking. Watermarking embeds a secret message into a 
cover multimedia data. In media watermarking the secret is usually a copyright 
notice and the cover a digital image. In digital watermarking, robustness is still 
a challenging problem if different sets of attacks needed to be tolerated 
simultaneously. In this paper we present an original spatial watermarking 
technique for video and images. Our approach modifies blocks of the image or 
frames by a spatial watermark insertion. Spatial mask of suitable size is used to 
hide data with less visual impairments. Watermark insertion process exploits 
average color of the homogeneity regions of the cover image.  We took a frame-
based approach to video watermarking. From video we extract a certain number 
of key-frames: the first, the middle, and last key-frame. The first step is 
decoding: transformation of mpeg to jpeg sequences, after that we select three 
frames that will be process by applying the watermark mask. In the reverse 
process of encoding we take the marked frames.  

Keywords: video watermarking, robustness, multimedia, JPEG, algorithm. 

1   Introduction 

The growing proliferation of multimedia digital content throughout, virtually, every 
digital platform and system available today has produced a profound impact. Digital 
Rights Management (DRM) solutions aim to enable content providers to assign and 
oversee usage permissions or rights for multimedia content upon purchase/distribution 
with the aid of cryptographic mechanisms. Nowadays, the rapid and extensive growth 
in Internet technology is creating a pressing need to develop several newer techniques 
to protect copyright, ownership and content integrity of digital media. This necessity 
arises because the digital representation of media possesses inherent advantages of 
portability, efficiency and accuracy of information content. On the other hand, this 
representation also puts a serious threat of easy, accurate and illegal perfect copies of 
unlimited number. Digital watermarking is now considered an efficient technology for 
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copyright protection. Several image watermark schemes have been developed in the 
past few years, both spatial and frequency domains are used for watermark 
embedding [1], [2], [3], [4]. The requirements of watermarking techniques, in general, 
need to posses the following characteristics: (a) imperceptibility for hidden 
information, (b) redundancy in distribution of the hidden information inside the cover 
image to satisfy robustness in watermark extraction process even from the cropped 
watermarked image and (c) possible use of one ore more keys to achieve 
cryptographic security of hidden content [5].  

Video watermarking involves embedding cryptographic information derived from 
frames of digital video into the video itself. Ideally, a user viewing the video cannot 
perceive a difference between the original, unmarked video and the marked video, but 
a watermark extraction application can read the watermark and obtain the embedded 
information. The features of the video watermarking algorithm are: video and audio 
watermark are combined; it is robust against the attack of frame dropping, averaging 
and statistical analysis; it allows blind retrieval of embedded watermark which does 
not need the original video; the watermark is perceptually invisible; it is resistant to 
loss compression. While spatial domain watermarking, in general, is easy to 
implement on computational point of view but too fragile to withstand large varieties 
of external attacks. On the other hand, frequency or transformed domain approach 
offers robust watermarking but in most cases implementation need higher 
computational complexity. Moreover the transform domain technique is global in 
nature and cannot restrict visual degradation of the cover image. But in the spatial 
domain scheme, degradation in image quality due to watermarking could be 
controlled locally leaving the region of interest unaffected.  

The present paper describes a computationally efficient block based spatial domain 
watermarking technique for a one level watermark symbol. The selection of the 
required pixels is based on variance of the block and watermark insertion exploits 
average color of the blocks. The proposed algorithms were tested on the most usual 
transformations of images and the obtained results showed that the proposed method 
is efficient. 

2   Watermarking Algorithms 

All watermarking methods share the same building block – an embedding system and 
the watermark extraction or recovery system [6]. Any generic embedding system 
should have as inputs: a cover data/image (I), a watermark symbol (W) and a key (k) 
to enforce security. The output of the embedding process is always the watermarked 
data/image (I’). The generic watermark recovery process needs the watermarked data, 
the secret key and depending on the method, the original data and/or the original 
watermark as input while the output is recovered watermark W with some kind of 
confidence measure for the given watermark symbol or an indication about the 
presence of watermark in the cover image under inspection. The original cover image 
I is a standard image of size NxN where N = 2p with a 24 bit RGB format. In the 
proposed work a binary image of size 256x256 or 512x512 is considered. It is marked 
each image with a watermark coefficient. That means, for each pixel, it is changed the 
value of the pixel given the following formula: 
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D(i,j) = C(i,j) + a*M*W 

where C(i,j) is the original value of a pixel at position (i,j); D(i,j) is the watermarked 
value of the same pixel; ‘a’ is a scalar factor (here a is chosen constant, but can be a 
variable of the position to improve the invisibility of the watermark and its detection); 
M is the mean of the block; and W is the watermark coefficient to be embedded. In 
our work, W could take the values +1 or –1 (one can easily extend the implementation 
to M). 

Our method has a simpler implementation and less complex computations than the 
general method. 

The proposed watermarking scheme is secure because any degree of degradation 
we apply the watermark remain in the virtual graph nodes.  

We took a frame-based approach to video watermarking. 
From video we extract a certain number of key-frames: the first, the middle, and 

last key-frame. The first step is decoding: - transformation of mpeg to jpeg
sequences, after that we select three frames that will be process by applying the 
watermark mask. In the reverse process of encoding we take the marked frames. 

Fig. 1. Proposed watermark processing 

The pixels of each image key-frame are arranged into hexagons like in the Fig. 2. 
Then the image key-frame is viewed as a graph not as a pixel matrix. The vertices 
represent the pixels and the edges represents neighborhood between pixels. The 
algorithm for this operation is as following: 

procedure construct_graph_from_keyframe (Keyframe K, 
edge ) is:

for i=0, width/edge – 3*edge do
for j=0; height/3 do

if i modulo 3=0 then
if j modulo 2=0 then

 K[i][j]=K[edge*i][edge*j+edge-1]; 
if j modulo 2 =1 then

 K[i][j]=K[edge*i][edge*j+edge+2];   
if i modulo 3=1 then

if j modulo 2 =0 then
 K[i][j]=K[edge*i-1][edge*j-edge]; 

if j modulo 2 =1 then
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 K[i][j]=K[edge*i-1][edge*j+edge*2]; 
if I modulo3 =2 then

if j modulo 2 =0 then
 K[i][j]=K[edge*i-2][edge*j+edge-1]; 

if j modulo 2 =1 then
 K[i][j]=K[edge*i-2][edge*j+edge+2]; 
  *output the graph 
End

The total running time of a call of the presented procedure is O(m*n), where “m” is 
the width and “n” is the height of image. 

Fig. 2. Example of key-frame block watermarking 

For reconstructing the marked image, there will verify only the graph’s nodes 
corresponding to the selected key. If the marked pixel has the color in the interval 
[min, max] with respect to the color of the bottom pixel, then it will consider that this 
pixel was marked in conformity with the given algorithm. The values ‘min, max’ 
resulted from many experiments. 

3   Experiments 

There are a lot of transformation that can be done on images [7], [8]: rotation, re-
dimension, compression (transforming the image to JPEG), cropping and of course 
the case in which the image is not changed. Because it is not known what 
transformation the user done, all these transformations are verified one –by – one and 
the percent of similitude between the original image and the verified one is returned. 

The detection algorithm detects the marked video in percent of 100%. Also this 
algorithm may be applied if the image is cropped. In this case it may be possible to 
lose some marked pixels depends on the position where the image was cropped. 

The detection algorithm detects this cropped video in percent of  91.3%. 
In the case of image rotation (angle of 90, 180 and arbitrary), there are verified all 

the key-frame nodes because the nodes’ position is changed. We search the nodes for 
which all of the three color’ channels have the values like the color’s channels of the 
bottom pixel minus one (or a certain constant). Before verifying these nodes, the 
image is re-dimensioned to the initial dimensions at which the image is marked.   

By experiments, there resulted that in the case of rotation by 90 and 180 degree, 
the constant is zero, but in the case of rotation by arbitrary angle the constant is very 
great (100). 
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Table 1. The percents of recognition obtained between the un-rotated and rotated marked key-
frames, for different rotation angles  

Rotation Angle Recognition Percent
30 55.1% 
45 55.1% 
60 55.1% 
90 100% 

180 100% 

In the case when we want to detect an image that was enlarged the results are 
weaker. From experiments resulted the following percents of recognition between the 
marked image and the marked enlarged image, as in the following table. The greater 
are the enlarge percents the weaker are the recognition percents. 

Table 2. The percents of recognition obtained between the marked and enlarged marked key-
frames, for different enlarged percents  

Rotation Angle Recognition Percent
20 89% 
40 75% 
60 74.22% 
80 72.3% 

100 55.6% 

Another possibility is the compression of JPEG key-frames at a different quality 
level.  

The implemented algorithm entirely detects a key-frame that was compressed to 
JPEG, a quality level of 100% and 80%. The color of pixels arranged into nodes 
selected by us for marking the image is changed because of transformations supported 
by the image. Then the color of these pixels is searched into a certain interval. 

From experiments results that a good value for this constant is 30. Using different 
degree of image compression for JPEG key-frames, the following percents of 
recognition between the marked image and the JPEG marked image are resulted, as in 
the bellow table: 

Table 3. The percents of recognition obtained between the marked and compressed marked 
key-frames, for different quality level  

Quality Recognition Percent
100 100% 
80 100% 
60 33.33% 
50 33.33% 
30 15.4% 
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4   Conclusions 

The paper proposed a watermark technique for video with the following properties: 
• Invisibility 
• Blind or Informed Detection 
• Capacity (Number of bits that can be hidden) 
•  Robustness – Key-frame watermarking (filtering, resizing, contrast 

enhancement, cropping, rotation, etc ) 

Our method has a simpler implementation and less complex computations than the 
general method. The proposed watermarking scheme is secure because any degree of 
degradation we apply, the watermark remains in the virtual graph nodes.  

The method developed above satisfies the necessary requests for the watermarking 
technique and the series of presented transformations accounts for the fact that it 
resists possible attacks. The method is easy to implement and the experimentally 
determined robustness shows that it can be used without fear of being detected or 
changed. 
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Abstract. Enforcement of copyright laws of software products is primarily 
managed in legal way, as the available technological solutions are not strong 
enough to prevent illegal distribution and use of software. This situation is 
particularly dangerous on the growing market of mobile software products: the 
lack of protection may be the most important setback of the expansion of this 
market, although we have all the necessary components to assure a trusted 
environment on handsets. In this paper we present our copy protection scheme 
called Swotector targeting primarily mobile phone applications, which 
combines techniques of obfuscation and software-watermarking to provide a 
solution which is purely technical, however still provides the necessary 
flexibility. Our test results have shown that the solution is efficient enough to 
overcome current challenges of software copy protection, above all the ability 
of the operating system to run both protected and non-protected applications. 

Keywords: software copy protection, software watermarking, obfuscation, 
reverse engineering, trusted OS, mobile software. 

1   Introduction 

According to the statistics of the Business Software Alliance (BSA) the global 
financial losses due to software piracy were about $30 billion in 2004 [1]. It is a 
common belief that there is not much to be done against the piracy of software in the 
PC world, however in the world of mobile phones, where the integrity of the 
operating system can be trusted, we may still have the opportunity to evolve in such 
way that the losses due to illegal software distribution could be at least moderated. 

In our belief the availability of a strong and flexible copy protection scheme is the 
most important prerequisite for further expansion of the mobile phone software 
market. This is why our research targeted embedded systems used in mobile phones, 
on which some slightly different assumptions can be made than on usually discussed 
PC platforms, as we can rely on a trusted OS ensuring the integrity of the processes. 

We propose a scheme, which merges the reliability of the public key infrastructure 
(PKI) with obfuscation and software watermarking techniques, assuming a trusted and 
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tamperproof OS on mobile phones, resulting in a protection supporting both freely 
distributable and copy protected software1.

2   Background 

Two main categories of software copy protection mechanisms exist: the autonomous 
systems and those, which use external collaboration [2]. 

The protections of autonomous systems are integrated into the software itself, so 
the security depends only on the used software techniques, including integrity 
protection, software obfuscation, calculating checksums, encryption, etc. [3] The most 
common solutions are based on the program checking itself, which are part of the 
program, so one can reveal them by reverse engineering and can bypass the protection 
by modifying the code [2]. These techniques are neither theoretically nor – based on 
our experience – practically secure enough [4]. 

The other category of protection mechanisms involve some external collaboration: 
the application uses a tamperproof processor, an operating system or other secure 
hardware or software solutions. This support can be either on-line or off-line [2]. 

To link the authorized user to his or her instance of the software, usually the 
services of a public key infrastructure [5] are used. For a copy protected software a 
license containing the information about the user, the product issuer or distributor and 
about the product itself should be attached to the product, so that the OS could check 
the authorization. The integrity of this license is protected by a digital signature, and 
the OS should not run copy protected software without the appropriate license. 

However, to support multiple use cases and business models, and also to allow 
comfortable software development, the OS should be capable of running both copy 
protected and unprotected software, which is one of the biggest challenges in 
developing a successful copy protection scheme.  

As opposed to usual protection models used in multimedia files using 
watermarking to trace content in order to identify its origin, software can apply 
watermarking to make possible the indication on the code that it is copy-protected. As 
the instructions of the code can be obfuscated arbitrary as long as the user-perceptible 
output remains the same, this enables us to implement more efficacious watermarks to 
software than to audio/video files.  

We can differentiate between two types of software watermarking techniques: 
static and dynamic. In case of static watermarks the information is injected into the 
application's executable file. The watermark is typically inside the initialized data, 
code or text sections of the executable [3]. As opposed to this, dynamic watermarks 
are stored in the program's execution state. This means that the presence of a 
watermark is indicated by some run-time behavior of the executable [6]. 

To prevent the easy removal of watermarks we can use for example software 
obfuscation, which is a collection of several different code transformations, originally 
with the common goal to make the reverse engineering more difficult both in case of 
automatic tools and for the human understanding of the code [7]. The most important 

1  The research and development project was realized by the financial support of the Economic 
Competitiveness Operative Programme (GVOP 3.1.1/AKF) of the Hungarian Government. 
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aim of these transformations in our proposed copy protection scheme is to make the 
code transformations meant to remove the watermark hard to accomplish. 

3   The Copy Protection Scheme 

The most important building blocks of the proposed copy protection scheme are the 
above mentioned watermarking and obfuscation techniques and the services of a 
public key infrastructure (PKI). The integrity of the software is ensured through a 
digitally signed license, and if the license or its digital signature is invalid, the OS 
should prevent the application from running. However, if there is no license attached 
to the application, the OS can start it assuming that it is not protected, but should 
continuously check for the presence of watermark in it, which would designate that 
originally it was a protected peace of software, so should have a license file attached. 
The removal of the watermark is made hard with applying different obfuscation 
methods, so that it is extremely hard for the attacker to change the code in order to 
break the protection and make the application run without the license. 

License checking, as the most important part of the scheme is shown in Fig. 1: 

Fig. 1. The license checking algorithm 

The major steps of the license checking algorithm are the following: 

1. Check if a digitally signed license is attached to the application.  
2. If there is a license, and if both the license (i.e. its hash signature) and the digital 

signature are valid, then the application can be run without any further checks. 
3. If the license or its digital signature is not valid, the application should stop 

immediately as the copy protection is violated. 
4. If there is no license attached to the application, it could either be a manipulated 

copy protected, but also a freely distributable software, so it should start. 
5. Parallel to this the OS should start the continuous search for watermarks.  
6. If the watermark is found in the application, its running should be stopped 

immediately, and the appropriate steps should be made, because the presence of the 
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watermark unambiguously signals that a license should have been attached to the 
application, without which it is an illegal copy. 

In our scheme we have chosen to use dynamic watermarks, because this way the 
watermark is formed continuously during program execution; this implies that the 
program should run for a while so that the OS can detect the watermark. The 
generation of the watermark is inserted into the code of the protected application by 
several transformations applied to it. These transformations (together with some 
control and data obfuscation methods) are applied at the assembly code level, and the 
process is integrated into the compilation process.  The whole process consists of four 
major steps, which are the (1) Preparation, (2) Analysis, (3) Transformation, and (4) 
Synthesis. As a first step the source code is transformed to assembly, which is then 
parsed to get an internal representation. Control flow and data analysis is 
accomplished on this representation as a second step, after which the transformations 
are accomplished, aiming at both watermarking and obfuscation. Finally, the internal 
representation is serialized back to assembly code, compiled and linked. 

4   The Software Watermarking Technique 

The basic idea is that the dynamic watermark signals the fact that the application is 
protected by statistically boosting the appearance of some specific values, the 
watermark values in the memory state of the application. A watermark value (WM) is 
derived from a random value appended with its transformation with a function g. This 
function can be even a simple XOR operation; its role is simply to keep the 
probability of appearing of such a value pair in a non-protected application low. The 
watermark value can be defined as follows: 

( ))(; rgrWM = , (1)

where RNDr = , a different random value every time a new WM is needed. 

Fig. 2. The gap between non-watermarked and watermarked applications 

These different WM values should be hidden in the memory of the process as 
frequently and for as long as possible, which means that these values should appear in 
the state of the program frequently enough to allow their detection and statistical 
evaluation of these detections. To achieve this goal we can for example pick the 
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parameters of different data obfuscation transformations in a way that one or more 
original values of a variable (D0, e.g. a typical value of a loop control variable) are 
transformed into watermark values, which are then stored in program state in the 
transformed domain. The gap between the prevalence of such watermark values in 
non-watermarked and watermarked applications, as shown in Fig. 2, can allow easy 
detection of the watermark by statistical means. 

The proposed watermarking technique is loosely interwoven with data obfuscation, 
as the watermarking module calculates the parameters of the obfuscation in such way 
that the transformed data should signal the presence of watermark through 
transforming some common original values (D0) to a watermark value (WM).

5   Results 

To evaluate the software watermarking we have implemented a full framework 
system called Swotector, a number of control and data obfuscation methods, and a 
watermarking technique relying on the linear variable encoding data obfuscation [7]. 
We performed different tests in the framework: the results are summarized in Table 1. 

Table 1. Results of test executions of watermarked and obfuscated code 

Test
case

Obf. 
Level 

WM 
Level 

WM 
Count 

Check 
Count Lines Blocks Exec. 

Time 

1 None None 0 261822 282 38 01:43 

2 None Low 6806 360574 536 38 01:36 

3 None Normal 13565 243006 883 38 01:40 

4 Low None 0 476782 517 57 10:26 

5 High None 0 477913 5939 191 10:27 

In Table 1 above columns Obf. Level and WM Level designate the applied 
obfuscation and watermark levels. In column WM Count the number of occurrences 
of watermark values, while in Check Count the overall number of examined variables 
during the execution are shown. Columns Lines and Blocks show the number of lines 
and blocks in the assembly file after the transformations, and finally the last column 
shows the execution time of the transformed test application on the test platform 
(Nokia 6600 – Symbian S60).

6   Conclusions 

From the results shown above we can conclude the followings: 

• Watermark is not detected in non-watermarked software (WM Count was zero in 
test cases 1, 4 and 5). This was an important expectation, which is apparently 
fulfilled by our watermarking technique.  

• In the watermarked software the number of detected watermark values is higher by 
several orders of magnitude (WM Count in test cases 2 and 3 has value of several 
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thousands) than in non-watermarked ones (where it was zero), so this proves the 
viability of our concept, as the gap shown in Fig. 2 can be detected dependably. 

• The implemented watermarking solution does not go with a high overhead in 
performance (the number of lines and blocks did not increase by different 
watermarking levels in test cases 1–3). 

• The obfuscation transformations increase the complexity of the software, however 
are also leading to a remarkable overhead in execution time (test cases 4 and 5). 

7   Summary 

In the above paper we have presented our copy protection scheme combining 
cryptography (PKI), software watermarking and obfuscation in order to achieve a 
strong but still flexible technical solution for software copy protection, targeting 
primarily mobile software development. The main idea is to support the running of 
both copy protected and freely distributable software by signaling that the application 
is protected via the presence of a watermark. Based on this scheme we have designed 
the architecture of a protection tool named Swotector  that can be integrated into a 
development environment to provide the proposed protection solution. 

Test results have shown that our technique is viable, as the gap of the statistical 
appearances of watermarked values is several of orders of magnitude wide between 
the non-watermarked and watermarked applications, thus the detection of the 
watermark can be done robustly enough. 
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